• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2026, Vol. 48 ›› Issue (1): 40-50.

• 高性能计算 • 上一篇    下一篇

面向安全可编程阀门阵列生物芯片的基于深度强化学习的组件布局算法#br#

陈子阳,陈钧,朱予涵,刘耿耿,黄兴   

  1. (1.西北工业大学计算机学院,陕西 西安 710072;2.福州大学计算机与大数据学院,福建 福州 350116)

  • 收稿日期:2025-10-22 修回日期:2025-12-29 出版日期:2026-01-25 发布日期:2026-01-25
  • 基金资助:
    国家自然科学基金(62372109);福建省杰出青年科学基金(2023J06017)

A module placement algorithm based on deep reinforcement learning for fully programmable valve array biochip

CHEN Ziyang,CHEN Jun,ZHU Yuhan,LIU Genggeng,HUANG Xing   

  1. (1.School of Computer Science,Northwestern Polytechnical University,Xi’an 710072;
    2.College of Computer and Data Science,Fuzhou University,Fuzhou 350116,China)
  • Received:2025-10-22 Revised:2025-12-29 Online:2026-01-25 Published:2026-01-25

摘要: 作为一种新型的连续流体式微流控生物芯片,完全可编程阀门阵列FPVA生物芯片具备高灵活性和可编程性的优点,将其用作实验平台可以提供更加灵活的操纵,同时可以实现个性化的实验流程配置。 然而,随着芯片制造工艺不断提高,FPVA生物芯片的集成度已经达到很高的水平,结合其高自由度的特性,对FPVA生物芯片进行编程和设计的难度也在不断提高。 组件布局是生物芯片设计中的一个重要步骤,在以往的研究中通常采用启发式算法进行布局,但是对于离散问题的求解效果比较有限,而且参数设置难度较大,因此设计一种高效易用、更加适合离散化的组件布局算法,能够提高整体芯片设计过程的效率。 深度强化学习DRL具备高效率、强自适应性和灵活性等优点,智能体通过不断地与环境交互,进行自我训练和调节,能够迅速适应各种复杂的变化和需求并找到最优或近似最优的策略。相比启发式算法,DRL能够更加贴合环境,找到全局最优的布局方案。 因此,设计了一种面向FPVA生物芯片的基于DRL的组件布局算法,为DRL智能体构建了FPVA芯片交互环境并采用双重深度Q网络构建组件布局决策模型,利用智能体能够快速迭代的优点迅速完成大规模集成FPVA生物芯片的组件布局工作。 同时,通过设计并发关系约束和布局区域约束来判断各个组件之间的并发关系并且对芯片上的可布局区域进行限制,使得布局方案能够更加符合实际情况,从而保证布局方案的正确性与可行性。 利用多个测试样例,将所提算法与最新相关算法进行了对比,实验结果表明所提算法能够生成具有更短预布线线长与更少单元复用次数的组件布局方案,从而为后续的布线阶段提供高质量的布局方案。 


关键词: 微流控生物芯片, 完全可编程阀门阵列, 组件布局, 深度强化学习, 双重深度Q网络

Abstract: As a novel continuous-flow microfluidic biochip, the fully programmable valve array (FPVA) biochip boasts high flexibility and programmability. As an experimental platform, it  offers enhanced manipulation flexibility and enables personalized experimental workflow configurations. However, with advancements in chip manufacturing processes, the integration level of FPVA biochips has reached a high level. Combined with its high degree of freedom, this increases the difficulty in programming and designing FPVA biochips. Module placement is a critical step in biochip design. Previous studies typically employ heuristic algorithms for placement, which often yield limited results for discrete problems and pose challenges in parameter settings. Designing an efficient, user-friendly algorithms more suitable for discretized module placement can enhance the overall efficiency of the chip design process. Deep reinforcement learning (DRL) offers advantages in efficiency, adaptability, and flexibility. Agents, through continuous interaction with the environment, self-train and adjust, swiftly adapting to various complex variations and requirements to find optimal or near-optimal strategies. Compared to heuristic algorithms, DRL can better adapt to the environment and find global optimal placement solution. Therefore, this paper proposes a DRL-based module placement algorithm for FPVA biochips. It constructs an interactive environment for DRL agents within FPVA chips and employs the double deep Q-network to build a module placement decision model. Leveraging the rapid iteration capability of agents, it efficiently completes large-scale integrated module placement tasks under FPVA biochips. Moreover, by designing concurrent relationship constraints and placement area constraints to determine the concurrency between modules and restrict the placement area on the chip, the placement scheme can better conform to real-world scenarios, ensuring the correctness and feasibility of the placement scheme. Comparative experiments with state-of-the-art algorithm across multiple test cases demonstrate that the proposed algorithm can generate module placement schemes with shorter pre-routing wirelength and fewer unit reuse instances, thus providing  a high-quality placement scheme for subsequent routing stages.


Key words: microfluidic biochip, fully programmable valve array(FPVA), module placement, deep reinforcement learning(DRL), double deep Q-network(DDQN)