• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (5): 142-148.

• 论文 • 上一篇    下一篇

三输入伯努利神经网络权值与结构双确定

张雨浓,罗飞恒,陈锦浩,黎卫兵   

  1. (中山大学信息科学与技术学院,广东 广州 510006)
  • 收稿日期:2012-03-09 修回日期:2012-08-15 出版日期:2013-05-25 发布日期:2013-05-25
  • 基金资助:

    国家自然科学基金资助项目(61075121);教育部高等学校博士学科点专项科研基金博导类课题(20100171110045)

Weights and structure determination of 3-input Bernoulli polynomial neural net

ZHANG Yunong,LUO Feiheng,CHEN Jinhao,LI Weibing   

  1. (School of Information Science and Technology,Sun Yatsen University,Guangzhou 510006,China)
  • Received:2012-03-09 Revised:2012-08-15 Online:2013-05-25 Published:2013-05-25

摘要:

根据函数逼近理论以及Weierstrass逼近定理,构造出一类以伯努利多项式的乘积为隐层神经元激励函数的三输入神经网络模型,即三输入伯努利神经网络。针对该网络模型,根据权值直接确定法以及隐层神经元数目与逼近误差的关系,提出了三个网络权值与结构双确定算法。数值实验显示,由这三个算法分别确定的神经网络在学习与校验方面都拥有优越的性能,同时也具有较佳的预测能力。

关键词: 伯努利神经网络, 权值直接确定法, 权值与结构确定法, 算法, 数值实验

Abstract:

Based on the function approximation theory and the Weierstrass approximation theorem, a novel 3input neural net activated by a group of products of Bernoulli polynomials (i.e., 3input Bernoulli polynomial neural net, 3IBPNN) was constructed in this paper. Furthermore, on the basis of the weightsdirectdetermination (WDD) method and the relationship between the number of hiddenlayer neurons and the approximation error of the neural net, three different weightsandstructuredetermination (WASD) algorithms were built up for the constructed 3IBPNN. Numerical experiment results further prove that all of the 3IBPNNs determined respectively by the three proposed algorithms perform excellently in training, testing and prediction.

Key words: Bernoulli polynomial neural net;weightsdirectdetermination method;weightsandstructuredetermination algorithm;algorithm;numerical experiment