• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (6): 96-100.

• 论文 • 上一篇    下一篇

利用节点顺序置信指导增量学习贝叶斯网络的研究与应用

贾松浩,杨彩,张海玉   

  1. (南阳师范学院计算机与信息技术学院, 河南 南阳 473061)
  • 收稿日期:2012-11-27 修回日期:2013-01-21 出版日期:2013-06-25 发布日期:2013-01-21
  • 基金资助:

    河南省基础与前沿技术研究项目(112300410225);河南省重点攻关项目(112102210408);河南省教育厅自然科学研究计划项目(2011B520029);河南省教育厅科学技术研究重点项目资助计划(12A520033)

Study and application of incremental learning
Bayesian network guided by node order confidence             

JIA Songhao,YANG Cai,ZHANG Haiyu   

  1. (College of Computer and Information Technology,Nanyang Normal University,Nanyang 473061,China)
  • Received:2012-11-27 Revised:2013-01-21 Online:2013-06-25 Published:2013-01-21

摘要:

将节点顺序置信指导的方法融入到增量学习过程中,提出了NOCLBN算法。该算法对于大规模数据集下贝叶斯网络的学习过程进行了改进,增强了每一批次数据学习的精度,提高了最终网络模型的质量。实验结果表明,NOCLBN算法对于大规模数据集下贝叶斯网络学习的结果质量更高。

关键词: 贝叶斯网络, 节点顺序置信, 增量学习

Abstract:

By introducing the node order of confidence in the procedure of incremental learning, so the NOCLBN algorithm is proposed. For the learning procedure of Bayesian network under largescale data set, the algorithm enhances the accuracy of the study of each batch of data, thus improving the quality of the final network model. Experimental results show that the NOCLBN algorithm can obtain high quality for the learning results of Bayesian network under largescale data set.

Key words: Bayesian network;node order of confidence;incremental learning