• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (10): 51-57.

• 论文 • 上一篇    下一篇

基于块嵌套循环的海洋大数据质量检验方案选择算法

黄冬梅,陈括,王振华,施黎莉   

  1. (上海海洋大学信息学院,上海 201306)
  • 收稿日期:2013-04-09 修回日期:2013-07-31 出版日期:2013-10-25 发布日期:2013-10-25
  • 基金资助:

    国家自然科学基金资助项目(61272098);科技部973计划资助项目(2012CB316200);南北极环境综合考察与评估专项(CHINARE20120407)

Optimal selection algorithm in quality inspection plan
of big marine data based on Block-Nested-Loops               

HUANG Dongmei,CHEN Kuo,WANG Zhenhua,SHI Lili   

  1. (College of Information,Shanghai Ocean University,Shanghai 201306,China)
  • Received:2013-04-09 Revised:2013-07-31 Online:2013-10-25 Published:2013-10-25

摘要:

面对具有多源、多类、多维以及动态性等特征的海洋大数据,如何快速有效得出优化的质量检验方案并对其进行质量控制,是制约海洋数据快速应用的关键问题之一。将skyline思想引入海洋数据质量优化检验方案的选择;运用超几何分布模型给出各类海洋质量检验方案的残差集合;基于块嵌套循环算法,对各质量检验方案的残差集合进行检索比较,最终选出优化的海洋数据质量检验方案。最后通过对某海域监测站点的海洋数据质量检验,验证了该方法的可行性。

关键词: 海洋大数据, 质量检验, 块嵌套循环算法, 残差

Abstract:

Big marine data possesses several typical characteristics such as large amount, multisource, multiple dimensions, multitype and so on. How to design an optimal quality inspection plan fast and control the ocean data timely becomes more and more important for the application of big marine data. Based on skyline, a method is proposed to select the optimal quality inspection plan for the quality inspection of big marine data. Firstly, the residual of acceptance quality probability of each quality inspection plans for ocean big data are calculated by Hypergeometric distribution model. Secondly, the optimal quality inspection plan is selected based on the algorithm of BlockNestedLoops (BNL), which compares the residual of acceptance quality probability of each quality inspection plans one by one. Finally, the proposed method is verified by inspecting the quality of the big marine data, which is collected by monitoring sites in a certain sea area.Key words:big marine data;quality inspection;blocknestedloops algorithm;residuals