• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (08): 1488-1496.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于深度迁移学习的舌象特征分类方法研究

宋超1,王斌1,许家佗2   

  1. (1.南京财经大学信息工程学院,江苏 南京 210023;2.上海中医药大学基础医学院,上海 201203)
  • 收稿日期:2020-01-15 修回日期:2020-07-23 接受日期:2021-08-25 出版日期:2021-08-25 发布日期:2021-08-24
  • 基金资助:
    国家自然科学基金(61372158);国家重点研发计划(2017YFD0700501);江苏省自然科学基金(BK20181414); 江苏省高校优秀科技创新团队(2017-15);江苏省研究生科研与实践创新计划(KYCX18_1393)

A tongue image classification method based on deep transfer learning

SONG Chao1,WANG Bin1,XU Jia-tuo2#br#

#br#
  

  1. (1.School of Information Engineering,Nanjing University of Finance and Economics,Nanjing 210023;

    2.Department of Basic Medicine,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China)

  • Received:2020-01-15 Revised:2020-07-23 Accepted:2021-08-25 Online:2021-08-25 Published:2021-08-24

摘要: 舌象分析是计算机视觉技术在中医望诊的客观化、定量化应用研究中的一个重要课题,其中2个关键步骤是舌体分割和舌象分类。通过级联分类器在原始图像上实现自动舌体定位,再将分割后的舌体图像在GoogLeNet和ResNet上进行深度迁移学习训练,用得到的深度网络对齿痕、裂纹和舌苔厚薄3种主要舌象特征进行分类。从中医医疗机构中获取2 245幅舌体图像建立数据集,对齿痕、裂纹和舌苔厚薄3类舌体图像进行分类实验,结果表明,所提方法分类性能优于传统的舌体图像特征分类方法,验证了基于深度迁移学习的舌象特征分类方法的有效性。


关键词: 舌象特征分类, 级联分类器, 迁移学习, 残差网络, GoogLeNet

Abstract: Tongue image analysis is an important topic in the objective and quantitative research and application of computer vision technology in the diagnosis and treatment of Traditional Chinese Medicine(TCM), and its two key steps are tongue segmentation and tongue image classification. Cascade classifier is used to automatically segment the tongue region on the original image, and then the segmented tongue image is deeply trained and learned on GoogLeNet and ResNet. The obtained depth network is used to classify toothmarks, cracks and thickness of tongue coating. 2245 tongue images obtained from specialized TCM medical institutions are used to build a dataset. In the experiments of classifying the three types of tongue images (toothmarks, cracks and thickness tongue coating), this method has better classification performance than the traditional tongue image feature classification methods. The effectiveness of the tongue feature classification method based on deep transfer learning is verified.


Key words: tongue feature classification, cascade classifier, transfer learning, residual network, GoogLeNet