• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (08): 1623-1628.

• 论文 • 上一篇    

基于类向心度的模糊支持向量机

许翠云,业宁   

  1. (南京林业大学信息科学技术学院,江苏 南京 210037)
  • 收稿日期:2012-09-13 修回日期:2013-01-21 出版日期:2014-08-25 发布日期:2014-08-25
  • 基金资助:

    国家973计划资助项目(2012CB114505);国家杰出青年计划资助项目(31125008);江苏省研究生创新基金资助项目(CXLX11_0525,CXZZ12_0527);江苏省青蓝工程学术带头人;江苏省六大人才高峰(电子信息类)

A novel fuzzy support vector
machine based on the class centripetal degree          

XU Cuiyun,YE Ning   

  1. (School of Information Technology,Nanjing Forestry University,Nanjing 210037,China)
  • Received:2012-09-13 Revised:2013-01-21 Online:2014-08-25 Published:2014-08-25

摘要:

传统支持向量机(SVM)训练含有噪声或野值点的数据时,容易产生过拟合,而模糊支持向量机可以有效地处理这种问题。针对使用样本与类中心之间的距离关系来构建模糊支持向量机隶属度函数的不足,提出了一种基于类向心度的模糊支持向量机(CCDFSVM)。该方法不仅考虑到样本与类中心之间的关系,还考虑到类中各个样本之间的联系,并用类向心度来表示。将类向心度应用于模糊隶属度函数的设计,能够很好地将有效样本与噪声、野值点样本区分开来,而且可以通过向心度的大小,对混合度比较高的样本进行区分,从而达到提高分类精度的效果。实验结果表明,基于类向心度的模糊支持向量机其分类正确率比支持向量机高,在使用三种不同隶属度函数的FSVM中,该方法的抗噪性能最好,分类性能最强。

关键词: 模糊支持向量机, 隶属度函数, 类向心度

Abstract:

The traditional support vector machine (SVM) often falls into overfitting when outliers are contained in the training data. The fuzzy support vector machine can effectively deal with this problem. According to the deficiency of the membership function designed based on the distance between a sample and its cluster center, a novel fuzzy support vector machine based on the class centripetal degree (CCDFSVM) is proposed. It combines the distance between a sample and its cluster center with the relationship between samples expressed as the class centripetal degree. This function can effectively separate the valid samples from the noises or outliers. Besides, the size of the class centripetal degree can reflect the samples mixed degree. Experimental results show that the fuzzy support vector machine based on the class centripetal degree is more robust than the traditional support vector machine, and it outperforms the other two FSVM counterparts with different membership functions in terms of antinoise and classification performance.

Key words: fuzzy support vector machine;membership function;class centripetal degree