• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (6): 82-87.

• 论文 • 上一篇    下一篇

基于改进F-SVM算法的雷达距离像目标识别

方宁1,2,谭飞2   

  1. (1.电子科技大学电子工程学院,四川 成都 611731;2.四川理工学院自动化与电子信息学院,四川 自贡 643000)
  • 收稿日期:2012-06-28 修回日期:2013-01-14 出版日期:2013-06-25 发布日期:2013-06-25
  • 基金资助:

    人工智能四川省重点实验室项目(2011RYJ06,2011RYY05)

Radar range profile’s recognition
based on an improved F-SVM algorithm        

FANG Ning1,2,TAN Fei2   

  1. (1.College of Electronic Engineering,University of Electronic Science and Technology of China, Chengdu 611731;
    2.College of Automation and Electronic Information,Sichuan University of Science and Engineering,Zigong 643000,China)
  • Received:2012-06-28 Revised:2013-01-14 Online:2013-06-25 Published:2013-06-25

摘要:

模糊支持向量机是在不可分样本集情况下进行模式分类的有效工具,为了进一步提高该算法的推广能力,对其进行了两方面的改进。一是在高维特征空间中引入不等距分类超平面,以期提高该算法的学习精度;二是在高维特征空间中,利用本文所提出的算法,筛选出有效的训练样本集,以期缩短该算法学习所耗时间。对模糊支持向量机的改进进行了理论推导,并且给出了有效训练样本集的筛选算法。把上述改进方案应用到两种飞机的雷达一维距离像识别中,实验结果表明其取得了很好的识别效果,并且缩短了算法学习时间。

关键词: 模糊支持向量机, 不等距分类超平面, 特征空间, 雷达一维距离像

Abstract:

  Fuzzy support vector machines (F-SVM) algorithm is effective for pattern classification on unclassifiable sample sets condition. For the sake of enhancing the algorithm’s applicability, it was improved in this paper from two aspects. One hand, nonequidistant margin hyperplane (NM) in high dimension feature space is introduced to improve on study precision; On the other hand, effectual training sample sets in high dimension feature space are filtrated, via algorithm introduced by this paper, to reduce study time. This paper gave the theoretical derivation of improved FSVM and the filter algorithm of effectual training sample sets. The improved methods were applied to Radar Range Profile’s Recognition of two planes. Experimental results show that these methods can obtain very excellent recognition effect and reduce the algorithm study time.

Key words: fuzzy support vector machines;nonequidistant margin hyperplane;feature space;radar range profile