• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (5): 160-164.

• 论文 • 上一篇    下一篇

基于模糊多类支持向量机的声母识别方法

赵剑辉1,凌卫新1,陈卓铭2,何敏聪1,欧阳静明2   

  1. (1.华南理工大学理学院,广东 广州510640;2.暨南大学附属第一医院语言障碍中心,广东 广州 510630)
  • 收稿日期:2010-05-10 修回日期:2010-09-27 出版日期:2011-05-25 发布日期:2011-05-25
  • 作者简介:赵剑辉(1986),男,浙江义乌人,硕士生,研究方向为语音识别和图像处理。凌卫新(1966),女,广东广州人,博士,副教授,研究方向为神经网络和图像处理。陈卓铭(1966),男,广东广州人,博士,教授,研究方向为神经康复、语言障碍诊治和认知心理。
  • 基金资助:

    国家863计划资助项目(2007AA02Z482);广州市重大攻关资助项目(2007C13G0131);中央高校基本科研业务费专项资金资助(21610507)

Application of Consonant Recognition Based on Fuzzy MultiClass Support Vector Machines

ZHAO Jianhui1,LING Weixin1,CHEN Zhuoming2,HE Mincong1,OUYANG Jingming2   

  1. (1.School of Science,South China University of Technology,Guangzhou 510640;
    2.Language Disorder Center of the First Affiliated Hospital of Jinan University,Guangzhou 510630,China)
  • Received:2010-05-10 Revised:2010-09-27 Online:2011-05-25 Published:2011-05-25

摘要:

声母识别在构音障碍评估中有重要临床意义,而声母时长短、不平稳,传统方法的识别效果不理想。本文使用小波变换对声母信号进行多尺度分析,提取出新的声母特征向量(DWTMFCCT),可以更精细刻画相似声母的差别,然后利用模糊多类支持向量机进行声母的识别。为降低模糊支持向量机进行多分类时所带来的计算复杂度,使用两阶段算法。实验结果表明,本文算法不仅提高了模糊支持向量机的训练效率,同时对声母有较好的分类效果。

关键词: 声母识别, 模糊支持向量机, 小波变换, Mel倒谱系数

Abstract:

Consonant recognition has important clinical significance in the assessment of dysarthria, while the consonants are  so short and unstable that the recognition results of the traditional methods are ineffective. The algorithm described in this paper extracts a new feature(DWTMFCCT) of the consonants employing wavelet transformation. And the difference of similar consonants can be described more accurately by the feature. And then the algorithm classifies consonants using a multiclass fuzzy support vector machine(FSVM). In order to reduce the computation complexity caused by using the standard fuzzy support vector machines for multiclass classification, this paper proposes an algorithm based on two stages. The experimental results show that the proposed algorithm can get better classification results while reducing the training time greatly.

Key words: consonant recognition;fuzzy support vector machine;wavelet transform;Mel frequency