• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (12): 2321-2330.

• 论文 • 上一篇    下一篇

基于GPU的空谱联合核稀疏表示高光谱分类并行优化

王启聪1,3,吴泽彬1,2,刘建军1,韦志辉1,3,叶舜1,柳家福1   

  1. (1.南京理工大学计算机科学与工程学院,江苏 南京 210094;2.南京理工大学连云港研究院,江苏 连云港 222006;
    3.江苏省光谱成像与智能感知重点实验室,江苏 南京 210094)
  • 收稿日期:2014-04-21 修回日期:2014-08-11 出版日期:2014-12-25 发布日期:2014-12-25
  • 基金资助:

    国家自然科学基金资助项目(61101194,61471199);江苏省自然科学基金资助项目(BK2011701);江苏省“六大人才高峰”项目(WLW011);高等学校博士学科点专项科研基金资助项目(20113219120024);CAST创新基金资助项目(CAST201227);中国地质调查局工作项目(1212011120227)

GPU based parallel optimization of spatial-spectral kernel
sparse representation for hyperspectral image classification          

WANG Qicong1,3,WU Zebin1,2,LIU Jianjun1,WEI Zhihui1,3,YE Shun1,LIU Jiafu1   

  1. (1.School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094;
    2.Lianyungang Research Institute,Nanjing University of Science and Technology,Lianyungang 222006;
    3.Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense,Nanjing 210094,China)
  • Received:2014-04-21 Revised:2014-08-11 Online:2014-12-25 Published:2014-12-25

摘要:

高光谱图像分类是遥感信息处理领域的热点问题,在核稀疏表示分类框架下,联合光谱信息和像元空间信息,空谱联合核稀疏表示高光谱图像分类能够取得较好的分类效果,但较高的计算复杂度及高光谱图像较大的数据量限制了其在实时性要求较高情况下的应用。基于GPU/CUDA架构,提出了一种空谱联合核稀疏表示高光谱分类的并行优化方法,设计访存优化策略对主机和设备端数据交互进行优化;充分利用GPU并行计算能力,加速分类过程中核矩阵的计算;采用依据GPU并行特性实现的矩阵运算,优化基于交替方向乘子法的分类模型求解过程。利用实际高光谱图像数据进行的实验,验证了该方法的有效性和高效性。

关键词: 遥感, 高光谱, GPU, 并行, 分类

Abstract:

Hyperspectral image classification is a hot issue of hyperspectral remote sensing information processing. Under the structure of kernel sparse representation classification, SpatialSpectral Kernel Sparse Representation Classification (SSKSRC) of hyperspectral images can achieve better performance by joint spectral features and information of spatially adjacent pixels. However, it is impossible to utilize it in timecritical condition because of the large scale of data and calculation. A parallel optimization method of SSKSRC is proposed based on GPU/CUDA. A memory access optimization strategy is designed to optimize the data exchange between the host and the device. The parallel computing ability of GPU is fully used to accelerate the calculation of the kernel matrix in the process of classification. The matrix operation that is realized according to the parallel feature of GPU is used to optimize the solving process of the classification model based on the alternating direction multiplier method. The experiments with real hyperspectral image data validate the effectiveness and efficiency of the proposed method.

Key words: remote sensing;hyperspectral;GPU;parallel;classification