• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (02): 335-341.

• 论文 • 上一篇    下一篇

基于观察学习的机场噪声监测点关联预测研究

陈曦,王建东,陈海燕   

  1. (南京航空航天大学计算机科学与技术学院,江苏 南京 210016)
  • 收稿日期:2013-09-11 修回日期:2013-11-01 出版日期:2015-02-25 发布日期:2015-02-25
  • 基金资助:

    国家自然科学基金资助项目(61139002);国家863计划资助项目(2012AA063301)

Research on the associated prediction of airportnoise
monitoring nodes based on observational learning 

CHEN Xi,WANG Jiandong,CHEN Haiyan   

  1. (College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
  • Received:2013-09-11 Revised:2013-11-01 Online:2015-02-25 Published:2015-02-25

摘要:

针对机场噪声监测点设备损坏和老化导致噪声数据采集异常的问题,寻求软件解决方案。在分析监测点之间关联性的基础上,建立了一种基于观察学习的机场噪声监测点关联预测模型。首先,通过衡量失效监测点和其余正常监测点之间的关联性来筛选出关联度高的监测点;接着,利用BP神经网络集成建立回归预测模型。提出了一种“基于学习成果优异度加权”的观察学习算法,解决了小样本的欠拟合问题,提升了模型泛化能力。基于某机场实测数据的实验表明,所提出的预测模型具有较好的预测能力,并且改进后的算法比标准的观察学习算法更为稳定,效率更高。

关键词: 机场噪声监测, 机场噪声预测, 关联预测, 观察学习, BP神经网络, 集成学习

Abstract:

The airport noise data collected by monitoring nodes may be abnormal caused by damaged or aging equipment. In order to revise these abnormal data,an airportnoise associated prediction model,which is based on observational learning algorithm and considers the correlation between monitoring nodes,is proposed.Firstly,the high correlational monitoring nodes for abnormal nodes are filtered out by measuring the correlation between the failure nodes and the normal nodes.Then,the ensemble BP neural network is used to build the model.To solve the under-fitting problem caused by small samples and to improve the generalization performance of the model,we also propose a weighted observational learning algorithm,in which the weights are measured by learning outcomes.The application in the measured data of an airport shows that the proposed model has better predictive ability,and the algorithm is more stable and effective than the standard observational learning algorithm.

Key words: airport-noise monitoring;airport-noise prediction;associated prediction;observational learning;BP neural network;ensemble learning