• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (11): 1997-2005.

• 论文 • 上一篇    下一篇

面向大规模云资源调度的可扩展分布式调度方法

林伟伟,朱朝悦   

  1. (华南理工大学计算机科学与工程学院,广东 广州 510640)
  • 收稿日期:2015-07-30 修回日期:2015-09-11 出版日期:2015-11-25 发布日期:2015-11-25
  • 基金资助:

    国家自然科学基金资助项目(61402183); 广东省科技计划资助项目(2014B010117001,2014A010103022,2014A010103008,2013B090200021,2013B010401005); 中央高校基本科研业务费专项资金资助项目(xzjsD2153930);广州开发区萝岗区科技领军人才项目(2014P176)

A scalable distributed scheduling method
for large-scale cloud resources  

LIN Weiwei,ZHU Chaoyue   

  1. (School of Computer Science & Engineering,South China University of Technology,Guangzhou 510640,China)
  • Received:2015-07-30 Revised:2015-09-11 Online:2015-11-25 Published:2015-11-25

摘要:

云数据中心异构物理服务器的能耗优化资源分配问题是NP难的组合优化问题,当资源分配问题规模较大时,求解的空间比较大,很难在合理时间内求得最优解。基于分而治之的思想,从调度模式方面提出可扩展分布式调度方法,即当云数据中心待调度的物理服务器的数量比较大时,将待调度的服务器划分为若干个服务器集群,然后在每个服务器集群建立能耗优化的资源分配模型,并利用约束编程框架Choco求解模型,获得能耗最优的资源分配方式。将提出的基于可扩展分布式调度方法的能耗优化云资源调度算法与非扩展调度算法进行实验比较,实验结果表明,提出的基于可扩展分布式调度方法的能耗优化云资源调度算法在大规模云资源分配上有明显的性能优势。关键词:

关键词: 云计算, 资源分配, 能耗优化, 分而治之, CSP

Abstract:

The energy consumption optimization of resources allocation in the cloud data center with heterogeneous physical servers is an NPHard combinatorial optimization problem. When the number of servers is large, the solution space is large as well. It is therefore quite difficult to get the optimal solution within reasonable time. We propose a scalable distributed scheduling method (SDSM) based on the "Divide and Conquer" idea from the aspect of scheduling model, which implements an efficient resource allocation algorithm in heterogeneous cloud environments. When the number of physical servers in cloud data centers is large, the servers will be divided into several server clusters, and then in every cluster we use Choco to model and solve the constraint satisfaction problem (CPS) of energy consumption optimization in heterogeneous cloud data centers, which can obtain the optimal resource allocation and greatly reduce its complexity. Finally, we compare the proposed SDSM and the nonscalable scheduling method through experiments, and the experimental results show that the SDSM has obvious advantage in largescale cloud resource allocation.

Key words: cloud computing;resource allocation;energy optimization;divide and conquer;constraint satisfaction problem (CPS)