摘要:
随着图像数据的大量增加,传统单处理器或多处理器结构的计算设备已无法满足实时性数据处理要求。异构并行计算技术因其高效的计算效率和并行的实时性数据处理能力,正得到广泛关注和应用。利用GPU在图形图像处理方面并行性的优势,提出了基于OpenCL的JPEG压缩算法并行化设计方法。将JPEG算法功能分解为多个内核程序,内核之间通过事件信息传递进行顺序控制,并在GPU+CPU的异构平台上完成了并行算法的仿真验证。实验结果表明,与CPU串行处理方式相比,本文提出的并行化算法在保持相同图像质量情况下有效提高了算法的执行效率,大幅降低了算法的执行时间,并且随着图形尺寸的增加,算法效率获得明显的提升。
张敏华,张剑贤,裘雪红,周端. 基于OpenCL 的JPEG压缩算法并行化设计与实现[J]. 计算机工程与科学.
ZHANG Min-hua,ZHANG Jian-xian,QIU Xue-hong,ZHOU Duan.
Parallel design and implementation of
JPEG compression algorithm based on OpenCL
[J]. Computer Engineering & Science.