摘要:
模糊聚类算法为了保证算法的收敛性,要求模糊指标m取值大于1,这限制了算法的普适性。提出广义多变量模糊C均值聚类算法(GMFCM),在多变量模糊C均值聚类算法(MFCM)的基础上,利用粒子群优化算法对分量模糊隶属度进行优化估计,进而将模糊指标拓展到m>0的情况,同时采用梯度法得到算法聚类中心迭代公式。GMFCM理论分析了模糊指标m扩展的原理,研究了模糊指标m在不同取值情况下的性质,解释了模糊指标m的实际意义,讨论了GMFCM算法的收敛性。GMFCM继承了MFCM算法的样本分量区分性能,弥补了MFCM算法聚类中心分量与样本分量重合时的不完备性,突破了模糊聚类算法对参数m的约束,提高了模糊聚类算法的普适性。基于gauss数据集和UCI数据集的仿真测试验证了所提算法的有效性。
文传军1,汪庆淼2. 广义多变量模糊C均值聚类算法[J]. 计算机工程与科学.
WEN Chuan-jun1,WANG Qing-miao2. A general multivariable fuzzy C-means clustering algorithm[J]. Computer Engineering & Science.