摘要:
针对由图像灰度空间产生的传统词袋模型SIFT特征无法体现图像的颜色信息的问题,提出了一种融合颜色特征的视觉词汇树来对图像进行描述。提取SIFT特征并建立词汇树,获取图像的SIFT表示向量。利用Kmeans方法对图像库中的所有图像的HSV值进行聚类,获得基于HSV空间的颜色词袋表示向量,避免了传统颜色直方图方法所带来的量化误差。将SIFT特征与颜色词袋特征进行融合,完成了图像的全局特征和局部特征的融合。然后,计算融合特征的相似度,将相似度从高到低排序,完成图像检索。为了验证本方法的有效性,选择Corel图像库对算法性能进行实验分析,从主观评价和客观评价标准分别进行评价,并与传统方法进行了对比。结果表明,特征融合的检索性能与单一特征方法相比有较大提高。特征融合方法的平均检索查准率和查全率查准率等评价指标,对比传统方法均有不同程度提高。
张南1,韩晓军1,2. 融合颜色词袋特征的视觉词汇树图像检索[J]. 计算机工程与科学.
ZHANG Nan1,HAN Xiaojun1,2.
Image retrieval based on visual vocabulary
tree fusing color wordbag feature
[J]. Computer Engineering & Science.