摘要:
为了提高个性化推荐系统的准确率,提出了一种基于内容的加权粒度序列推荐算法。通过分析项目属性关系将项目粒度化,计算每个粒度的贡献度得到项目特征矩阵。再根据用户行为信息生成用户粒度序列并进行粒度映射,利用Apriori算法提取出用户偏好矩阵。最后将项目特征矩阵和用户偏好矩阵做乘积运算,其结果代入改进的sigmoid函数中进行喜好概率预测,从而完成TopN项目推荐。实验选取MovieLens数据集,结果表明基于内容的加权粒度序列的推荐算法准确率达到72.27%,高于当前流行的推荐算法;在效率方面,推荐时间少于相同用户数量下的协同过滤推荐算法;综合测度评分为0.393,充分验证了算法的整体性能优于其他推荐算法。