• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于稠密光流和边缘特征的烟雾检测算法

林成忠1,张为1,王鑫2,刘艳艳3   

  1. (1.天津大学电子信息工程学院,天津 300072;2.公安部天津消防研究所,天津 300381;
    3.南开大学电子信息与光学工程学院,天津 300071)
  • 收稿日期:2017-02-13 修回日期:2017-04-26 出版日期:2018-07-25 发布日期:2018-07-25
  • 基金资助:

    公安部技术研究计划项目(2017JSYZC35)

Video smoke detection based on
 dense optical flow and edge features

LIN Chengzhong1,ZHANG Wei1,WANG Xin2,LIU Yanyan3   

  1. (1.School of Electronic Information Engineering,Tianjin University,Tianjin 300072;
    2.Tianjin Fire Research Institute of MPS,Tianjin 300381;
    3.College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300071,China)

     
  • Received:2017-02-13 Revised:2017-04-26 Online:2018-07-25 Published:2018-07-25

摘要:

为了克服传统火灾烟雾检测技术的缺陷,提高视频烟雾检测算法的检测率,通过观察烟雾运动的特性,提出一种基于稠密光流和边缘特征的烟雾检测算法。该算法首先利用混合高斯背景建模和帧差相结合的方法提取运动区域,然后将此运动区域池化为上、中、下三部分,并在每个池化区域提取光流矢量特征和边缘方向直方图。考虑到烟雾运动在时域中的连续相关性,提取相邻三帧的烟雾特征向量以提高算法的鲁棒性。最后使用支持向量机进行训练和烟雾检测。实验结果表明,该算法在测试视频集上准确率超过94%,与现有方法相比,能更好地适应实际应用中复杂的环境条件。
 

关键词: 烟雾检测, 稠密光流, 边缘方向直方图, 支持向量机

Abstract:

To overcome the deficiencies of traditional fire smoke detection techniques and improve the detection rate of smoke detection algorithms, we propose a new smoke detection algorithm based on dense optical flow and edge features according to the characteristics of smoke movements. Firstly, the algorithm extracts the moving regions by combining the Gaussian mixture model (GMM) for background modeling with the frame difference method. Then by dividing the motion area into three parts, including the upper, middle and lower parts, the algorithm extracts optical flow vector features and edge orientation histograms from each part. Considering the continuous relevance of smoke movement in the time domain, the algorithm extracts the feature vectors of smoke from every three adjacent frames to enhance the robustness. Finally, the training and detection of smoke are implemented by using support vector machines. A high detection rate above 94% is obtained on the video test set. Experimental results show that the proposed algorithm can better adapt to complex environmental conditions in practical applications than other existing algorithms.

Key words: smoke detection, dense optical flow, edge orientation histogram, support vector machine