• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

自适应目标变化的时空上下文抗遮挡跟踪算法

张晶,王旭,范洪博   

  1. (昆明理工大学信息工程与自动化学院,云南 昆明 650500)
  • 收稿日期:2017-06-21 修回日期:2017-08-23 出版日期:2018-09-25 发布日期:2018-09-25
  • 基金资助:

    国家自然科学基金(61562051);云南省应用基础研究计划重点项目(2014FA029)

A spatio-temporal context based visual tracking algorithm
with anti-occlusion and adaptive target change

ZHANG Jing,WANG Xu,FAN Hongbo   

  1. (Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
     
  • Received:2017-06-21 Revised:2017-08-23 Online:2018-09-25 Published:2018-09-25

摘要:

在传统时空上下文目标跟踪过程中,为了自适应目标尺度变化,以及解决目标跟踪失败的跟踪无法恢复问题,提出了一种自适应目标变化的时空上下文抗遮挡跟踪算法
STCALD。首先,在初始框采取TLD中值流算法初始化跟踪点,并利用FB误差算法预测下一帧跟踪点位置。其次利用STC算法计算得到目标框并计算其保守相似度,
当超过设定阈值即跟踪有效,将跟踪点与目标框进行运动相似度计算以便进行窗口调整。相反,利用检测器进行检测,对单一聚类框直接输出,而对多个检测聚类框学习其时空上下文模型,利用当前空间模型逐个计算其置信度,输出置信值最大者。最后,进行在线学习更新分类器的相关参数。对不同的测试视频序列进行实验,结果表明,STCALD算法能够适用于目标尺度变化、遮挡等复杂情景下的跟踪,具有一定的鲁棒性。
 
 

关键词: 目标跟踪, 自适应, 尺度变化, 时空上下文, 运动相似度

Abstract:

In order to adapt to the target scale changes and resolve the unrecoverable problem of target tracking failure in the tracking process in traditional spatiotemporal context, we propose an antiocclusion and adaptive target change visual tracking algorithm based on spatiotemporal context learning, called STCALD. Firstly, we employ  the TLD median flow algorithm to initialize the tracking point and the forwardbackward (FB) error algorithm to predict the location of the next frame. Secondly, we use the STC algorithm to determine the output box and calculate its conservative similarity. When the threshold is exceeded the tracking is valid, and the movement similarity between the tracking point and the target frame is calculated. On the contrary, if the tracking fails, we use the TLD detector for detection. As for a single cluster box, it is taken as the output directly; but for multiple detection clusters, its spacetime context model is learned, confidence graphs are calculated one by one by the current spatial model, and  the maximum confidence map is taken as the output. Finally, we update classifier related parameters for online learning and conduct experiments on different test video sequences. Experimental results show that the STCALD algorithm can be applied to visual target tracking in complex conditions, such as scale change, occlusion, and so on with a certain degree of robustness.
 

Key words: target tracking, adaptive, scale change, spatiotemporal context, movement similarity