• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

一种基于元数据的众包图片效用最优选择算法

宋洁琼,赵明   

  1. (中南大学软件学院,湖南 长沙 410075)
  • 收稿日期:2017-08-10 修回日期:2017-10-17 出版日期:2018-11-25 发布日期:2018-11-25
  • 基金资助:

    国家自然科学基金(61572526)

An optimal utility selection algorithm for
crowdsourcing  photos based on metadata
 

SONG Jieqiong,ZHAO Ming   

  1. (School of Software,Central South University,Changsha 410075,China)
  • Received:2017-08-10 Revised:2017-10-17 Online:2018-11-25 Published:2018-11-25

摘要:

随着互联网的高速发展,移动终端设备产生的众包图片可以用在许多重要应用场景当中以获得有效的信息。例如地震后现场区域的修复、重大事故的处理。但是,这些应用场景往往都会有资源限制的问题,如带宽、终端的存储与处理能力等等,这就限制了形成众包图片的数量。因此,如何在资源有限的情况下,从众包图片中实现目标的最佳还原是一个巨大挑战。通过采集与处理图片的地理和几何数据,形成图片的元数组,在限制计算资源的条件下,提出了一种以元数据为输入的众包图片效用最优选择算法,以实现目标的最佳还原。算法的输入是元数据而非像素,所以在资源有限的应用场景中能够高效地分析众包。采用图片的效用来衡量目标区域被覆盖的程度,并提出了图片效用计算方法。最后设计了仿真实验,实验结果验证了算法的有效性与优越性。
 

关键词: 众包, 图片处理, 最优选择算法

Abstract:

With the rapid development of the Internet, crowdsourced photos generated by mobile terminal devices can be used in many critical application scenarios, such as post earthquake recovery and emergency management. However, such applications often have resource constraints such as bandwidth, terminal device storage and processing capability, which limit the number of crowdsourced photos. Thus, it is a big challenge to use the limited resources to best reproduce the target from crowdsourced photos. In this paper, we collect and process various geographical and geometrical data of the photos to form a metaarray of photos, and propose an optimal utility selection algorithm of crowdsourced photos to achieve the best reproduction of the target under the condition of limited resources. The input of the algorithm is metadata rather than pixels, so it can efficiently analyze crowdsourcing in resourceconstrained applications. The utility of photos is used to measure the coverage degree of the target area, and an effective photo utility calculation method is proposed. Finally, we design a simulation experiment, and the results prove the effectiveness and superiority of the algorithm.
 

Key words: crowdsourcing, photo processing, optimal selection algorithm