• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (01): 16-26.

• 高性能计算 • 上一篇    下一篇

偏好匹配满意度最大化的众包任务分配

郭嘉宇1,付晓东1,2,岳昆3,刘骊1,冯勇1,刘利军1   

  1. (1.昆明理工大学信息工程与自动化学院,云南 昆明 650500;

    2.昆明理工大学云南省计算机技术应用重点实验室,云南 昆明 650500;

    3.云南大学信息学院,云南 昆明 650504)

  • 收稿日期:2020-11-16 修回日期:2021-03-20 接受日期:2022-01-25 出版日期:2022-01-25 发布日期:2022-01-13
  • 基金资助:
    国家自然科学基金(61962030,U1802271,61862036);云南省杰出青年科学基金(2019FJ011);云南省中青年学术和技术带头人基金(202005AC160036)

Task allocation of crowdsourcing for maximizing satisfaction with preference matching

GUO Jia-yu1,FU Xiao-dong 1,2,YUE Kun3,LIU Li1,FENG Yong1,LIU Li-jun1   

  1. (1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;

    2.Computer Technology Application Key Laboratory of Yunnan Province,
    Kunming University of Science and Technology,Kunming 650500;

    3.School of Information Science and Engineering,Yunnan University,Kunming 650504,China)

  • Received:2020-11-16 Revised:2021-03-20 Accepted:2022-01-25 Online:2022-01-25 Published:2022-01-13

摘要: 众包任务分配机制对众包任务完成质量起着至关重要的作用,然而现有的分配方法未在稳定性条件下考虑众包用户双边偏好,分配结果的准确性有待提高,并且存在众包用户因不满意当前分配对象而导致众包任务完成质量较低的问题。为此提出一种基于偏好匹配的众包任务分配方法,该方法首先考虑众包任务与工人的双边偏好,根据偏好序计算任务与工人的满意度,生成满意度矩阵;其次,该方法借鉴稳定匹配思想在考虑分配主体偏好的基础上,使分配主体对当前分配对象尽可能满意,以保障分配结果的稳定性;然后,将众包任务分配问题建模为稳定匹配规则下寻找任务最大满意度的优化问题;最后,使用贪心算法对该问题进行求解,得到众包任务分配方案。通过实验验证了该方法的有效性,实验结果表明,该方法提高了分配方案的准确性,并有效减少了无效分配的数量,从而提高了众包任务完成质量。


关键词: 众包, 任务分配, 用户偏好, 稳定匹配, 贪心算法

Abstract: Task allocation mechanism plays an important role on crowdsourcing task quality. However, the existing allocation methods do not consider the bilateral user preferences of crowdsourcing, the accuracy of the allocation results remains to be improved, and there are many crowdsourcing users who are not satisfied with the current allocated crowdsourcing tasks, causing the phenomenon of low quality of crowdsourcing task accomplishment. Therefore a crowdsourcing task allocation method based on preference matching is proposed. Firstly, this method compute satisfaction and construct satisfaction matrix by using the preference of crowdsourcing tasks and workers. Secondly, by referring to the idea of stable matching and taking into account the bilateral preferences of crowdsourcing subjects, the method makes crowdsourcing subjects as satisfied as possible with the current allocation objects so as to guarantee the stability of the allocation results. Then, by using the idea of stable matching, the crowdsourcing task allocation problem is modeled as an optimization problem to find the maximum satisfaction of tasks under stable matching rules. Finally, greedy algorithm is used to solve the problem and a crowdsourcing task allocation scheme is obtained. The rationality and effectiveness of the method are verified by experiments, which shows that the method improves the accuracy of the allocation and effectively reduces the number of invalid allocations, thus improving the quality of crowdsourcing task allocation. 


Key words: crowdsourcing, task allocation, user preference, stable matching, greedy algorithm