• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

带有双判别器的对抗性领域适应图像分类算法

许浩,郭卫斌   

  1. (华东理工大学信息科学与工程学院,上海 200237)
  • 收稿日期:2019-01-02 修回日期:2019-03-21 出版日期:2019-09-25 发布日期:2019-09-25
  • 基金资助:

    国家自然科学基金(61672227)

An adversarial domain adaptation image
classification algorithm with dual discriminators

XU Hao,GUO Wei-bin   

  1. (School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
  • Received:2019-01-02 Revised:2019-03-21 Online:2019-09-25 Published:2019-09-25

摘要:

生成对抗网络的出现将对抗学习的思想引入了机器学习的不同知识体系,带来了全新的发展。对抗性的领域适应算法利用一个共享特征提取器提取域不变表征,一个判别器进行辨别,双方通过对抗性的迭代更新方式达到最优解。在数据来源上,生成对抗网络和领域适应都有极其类似的2个域。在目标函数上,两者都试图追寻一致性。从理论和逻辑结构出发分析两者的内在相似性,尝试利用已成熟的生成对抗网络体系从更深层次进一步提升领域适应性能。通过类比,提出使用2个判别器解决已有对抗性领域适应算法中存在的“模式崩溃”问题,并使用伪标签进行结构上的完善。最后,在标准领域适应任务上的实验表明了本文算法的可行性和有效性。

关键词: 领域适应, 迁移学习, 图像分类, 对抗网络

Abstract:

Since the appearance of generative adversarial networks, adversarial learning has been widely used in various branches of machine learning, which drives new developments. In domain adaptation, adversarial domain adaptation methods use a shared feature extractor to extract the domain invariant representation and a discriminator to
judge. Both reach optimal solution through the iterative update of adversarial learning. In terms of data sources, generative adversarial networks and domain adaptation have two similar domains. In the aspect of objective functions, both try to pursue consistency. We attempt to further enhance the domain adaption performance from a deeper level by taking advantage of the mature framework of generative adversarial networks and analyzing intrinsic similarities between the two based on the theoretical level and logical structure. By analogy, the model employs two discriminators to solve the mode collapse problem existing in previous adversarial domain adaptation algorithms, and utilzies pseudo labels for structural improvement. Finally, experiments on standard domain adaptation tasks confirm the feasibility and effectiveness of the method.
 

Key words: domain adaptation, transfer learning, image classification, adversarial networks