• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

结合信任度和项目关联的混合推荐算法

杨丰瑞1,2,3,吴晓浩1,2,万程峰1,2   

  1. (1.重庆邮电大学通信与信息工程学院,重庆 400065;2.重庆邮电大学通信新技术应用研究中心,重庆  400065;
    3.重庆重邮信科(集团)股份有限公司,重庆 401121)
  • 收稿日期:2018-11-20 修回日期:2019-04-24 出版日期:2019-11-25 发布日期:2019-11-25

A hybrid recommendation algorithm combining
trust degree and project association

YANG Feng-rui1,2,3,WU Xiao-hao 1,2,WAN Cheng-feng1,2   

  1. (1.School of Communication and Information Engineering,
    Chongqing University of Posts and Telecommunications,Chongqing 400065;
    2.Research Center of New Telecommunication Technology Applications,
    Chongqing University of Posts and Telecommunications,Chongqing 400065;
    3 Chongqing Chongyou Information Technology (Group) Co.Ltd.,Chongqing 401121,China)
  • Received:2018-11-20 Revised:2019-04-24 Online:2019-11-25 Published:2019-11-25

摘要:

推荐系统是大数据时代处理信息过载问题的重要手段,传统的推荐算法的准确性和可靠性相对较低。针对用户和项目冷启动问题,提出一种基于概率矩阵分解的混合型推荐算法(HR-TP),先从用户的评分角度挖掘用户的信任关系,再利用标签上下文根据用户特征测量项目间的关联关系,然后融合到概率矩阵模型中进行推荐。实验表明,本文提出的算法在推荐精度上对比常规方法取得了很好的效果。
 

关键词: 推荐系统, 矩阵分解, 信任度, 项目关联

Abstract:

Recommendation is an important means of dealing with information overload in the era of big data. Traditional recommendation algorithms have relatively low accuracy and reliability. Aiming at the cold start issue of new users and projects, we propose a hybrid recommendation algorithm   based on probability matrix decomposition (HR-TP). Firstly, the user's invisible trust relationship is mined from the perspective of the user’s rating. Then the label context is used to measure the relationship between items according to user characteristics. The relationship matrix is fused with the probability matrix model to make recommendation. Experiments show that the proposed method achieves better results in recommendation accuracy compared with conventional methods.

Key words: recommendation system, matrix decomposition, trust degree, project association