摘要:
目前大多数多目标优化算法没有考虑到决策变量之间的交互性,只是将所有变量当作一个整体进行优化。随着决策变量的增加,多目标优化算法的性能会急剧下降。针对上述问题,提出一种无参变量分组的大规模变量的多目标优化算法(MOEA/DWPG)。该算法将协同优化与基于分解的多目标优化算法(MOEA/D)相结合,设计了一种不含参数的分组方式来提高交互变量分组的精确性,提高了算法处理含有大规模变量的多目标优化算法的性能。实验结果表明,该算法在大规模变量多目标问题上明显优于MOEA/D及其它先进算法。
朱登京,段倩倩. 无参分组大规模变量的多目标算法研究[J]. 计算机工程与科学.
ZHU Deng-jing,DUAN Qian-qian.
A multi-objective optimization algorithm without
parameter grouping and with large-scale variables
[J]. Computer Engineering & Science.