• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

基于Pareto支配的MPRM电路面积与功耗优化

闫盼盼,俞海珍,史旭华,万凯   

  1. (宁波大学信息科学与工程学院,浙江 宁波 315211)
  • 收稿日期:2019-03-01 修回日期:2019-09-11 出版日期:2020-04-25 发布日期:2020-04-25
  • 基金资助:

    国家自然科学基金(61773225)

Pareto dominance based area and power
consumption optimization of MPRM circuit

YAN Pan-pan,YU Hai-zhen,SHI Xu-hua,WAN Kai   

  1. (School of Information Science and Engineering,Ningbo University,Ningbo 315211,China)
  • Received:2019-03-01 Revised:2019-09-11 Online:2020-04-25 Published:2020-04-25

摘要:

针对MPRM电路的面积与功耗折衷优化问题,提出一种基于多目标三值多样性粒子群MOTDPSO算法的最佳极性搜索方案。在三值多样性粒子群算法求解MPRM电路综合优化问题的基础上,对超出定义的边界范围的粒子,执行边界约束处理,并结合Pareto支配概念改进算法;然后建立基于Pareto支配的粒子与MPRM电路极性之间的参数映射关系,并结合面积与功耗估计模型以及 OR/XNOR电路混合极性转换方法,将该算法应用于MPRM电路的面积和功耗优化。最后对18个PLA格式MCNC Benchmark电路进行测试,与NSGA-II算法搜索到的结果相比,MOTDPSO算法获取的最优解的面积平均优化率为4.29%,功耗平均优化率为6.02%。

关键词: 粒子群算法, MPRM电路, Pareto支配, 极性转换

Abstract:

Aiming at the comprehensive optimization problem of area and power consumption of MPRM circuits, an optimal polarity search scheme, called Multi-Objective Ternary Diversity Particle Swarm Optimization (MOTDPSO), is proposed. On the basis of Ternary Diversity Particle Swarm Optimization (TDPSO) solving the comprehensive optimization problem of MPRM circuits, the mutation operator is introduced to perturb the particle, and the boundary constraint processing is performed on the particle beyond the defined boundary range. The concept of Pareto dominance is used to improve the algorithm. Then, the parameter mapping relationship between the particle based on Pareto dominance and the polarity of MPRM circuits is established. By combining the area and power evaluation model and the OR/XNOR circuit mixed polarity conversion method, the algorithm is applied to optimize the area and power consumption of MPRM circuits. Finally, tests on 18 MCNC benchmark circuits with PLA format show that, compared with the NSGA-II algorithm, the average area optimization rate of the optimal solution obtained by the MOTDPSO algorithm is 4.29%, and the average power consumption optimization rate is 6.02%.
 

Key words: Particle Swarm Optimization (PSO), MPRM circuit, Pareto dominance, polarity conversion