• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (02): 329-339.

• 图形与图像 • 上一篇    下一篇

基于多支路特征融合的行人重识别研究

熊炜1,2,杨荻椿1,艾美慧1,李敏1,2,李利荣1   

  1. (1.湖北工业大学电气与电子工程学院,湖北 武汉 430068;

    2.美国南卡罗来纳大学计算机科学与工程系,南卡 哥伦比亚 29201)

  • 出版日期:2021-02-25 发布日期:2021-02-23
  • 基金资助:
    国家自然科学基金(61571182,61601177);湖北省自然科学基金(2019CFB530);国家留学基金(201808420418);湖北省教育厅科学技术研究计划(B2019042)

Person re-identification based on multi-branch feature fusion

XIONG Wei1,2,YANG Di-chun1,AI Mei-hui1,LI Min1,2,LI Li-rong1   

  1. (1. School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068,China;

    2. Department of Computer Science and Engineering,University of South Carolina,Columbia 29201,USA)

  • Online:2021-02-25 Published:2021-02-23

摘要: 针对目前行人重识别不能充分利用有效特征信息进行识别的问题,提出了一种基于多支路特征融合的行人重识别模型。首先将3个不同的卷积块分别接出1条支路;然后对每条支路上的特征采用注意力机制、批特征擦除等方法处理;最后将各支路特征进行融合,获得了高细粒度表征能力的特征。训练时,各支路相互监督。在Market1501、DukeMTMC-reID、CUHK03和MSMT17数据集上进行了单域和跨域验证实验,结果表明本文模型具有良好的性能,Rank-1和mAP指标高于大多数主流模型,其中在CUHK03数据集上,Rank-1和mAP分别达到了76.6%和72.8%。


关键词: 行人重识别, 多支路特征, 特征融合, 跨域, 相互监督

Abstract: This paper proposes a new person re-identification (ReID) method based on multi-branch feature fusion, in order to solve the problem that current person ReID cannot make full use of effective feature information for identification. Firstly, each of the last 3 convolution blocks is connected to a respective branch. Secondly, approaches such as attentional mechanism and batch feature erasing (BFE) are used to deal with the feature of each branch. Finally, the feature of each branch is fused to obtain the high fine-grained representational feature. The 3 branches monitor each other during training. Single-domain and cross-domain experiments have been conducted to evaluate the performance of our proposed method on Market1501、DukeMTMC-reID、CUHK03 and MSMT17 benchmark datasets. Results show that the proposed method outperforms other state-of-the-art techniques. Rank-1 and mAP on CUHK03 are 76.6% and 72.8%, respectively.



Key words: person re-identification, multi-branch feature, feature fusion, cross-domain, mutual monitoring