• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (06): 1024-1031.

• 图形与图像 • 上一篇    下一篇

基于无监督学习的无人机目标跟踪

方梦华1,2,姜添1,2   

  1. (1.中国矿业大学计算机科学与技术学院,江苏 徐州 221116;2.矿山数字化教育部工程研究中心,江苏 徐州 221116)

  • 收稿日期:2020-04-27 修回日期:2020-07-11 接受日期:2021-06-25 出版日期:2021-06-25 发布日期:2021-06-22
  • 基金资助:
    软件新技术国家重点实验室开放基金(KFKT2018B27);中央高校基础研究基金( 2017XKQY079)

UAV-based target tracking based on unsupervised learning

FANG Meng-hua1,2,JIANG Tian1,2   

  1. (1.School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116;

    2.Digitization of Mine,Engineering Research Center of Ministry of Education of China,Xuzhou 221116,China)

  • Received:2020-04-27 Revised:2020-07-11 Accepted:2021-06-25 Online:2021-06-25 Published:2021-06-22

摘要: 随着计算机视觉领域中各项研究的发展,目标跟踪变得越来越热门,在各行各业得到广泛应用。基于无人机的目标跟踪也随之得到发展。相比于普通的目标跟踪,利用无人机进行目标跟踪有不少优势,但是也存在一些挑战。针对有关无人机目标跟踪的数据集有限,数据质量不高,且部分数据集中数据缺少统一标注的情况,基于无监督学习,设计了一种新的无人机目标跟踪模型。该模型对UDT模型的主干网络和跟踪方法进行了改进。结合了SiamFc网络结构和UDT无监督的目标跟踪思想,将模型的主干网络改进为AlexNet轻量级神经网络,通过前向跟踪、多帧后向验证方法实现目标跟踪。对比实验结果表明,设计的模型比改进前的模型以及其他经典的跟踪模型效果更佳。


关键词: 无人机, 目标跟踪, 无监督学习, 孪生网络

Abstract: With the development of various researches in the field of computer vision, target tracking has become more and more popular and has been widely used in all walks of life. UAV-based arget tracking has also evolved. Compared with ordinary target tracking, UAV-based target tracking has many advantages, but there are also some challenges. In view of the limited data sets, low data quality, and lack of unified data labeling in UAV-based target tracking, this paper designs a new UAV-based target tracking model based on unsupervised learning. This model improves the backbone network and tracking method of UDT model. Combining the SiamFc network structure and the unsupervised target tracking idea of UDT, the backbone network of the model is improved to an AlexNet lightweight neural network, and target tracking is achieved through forward tracking and multi-frame backward verification methods. Comparative experiment results show that the designed model is better than the model before improvement and other classic tracking models.

Key words: UAV, target tracking, unsupervised learning, siamese network