计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (6): 1024-1031.
方梦华1,2,姜添1,2
FANG Meng-hua1,2,JIANG Tian1,2
摘要: 随着计算机视觉领域中各项研究的发展,目标跟踪变得越来越热门,在各行各业得到广泛应用。基于无人机的目标跟踪也随之得到发展。相比于普通的目标跟踪,利用无人机进行目标跟踪有不少优势,但是也存在一些挑战。针对有关无人机目标跟踪的数据集有限,数据质量不高,且部分数据集中数据缺少统一标注的情况,基于无监督学习,设计了一种新的无人机目标跟踪模型。该模型对UDT模型的主干网络和跟踪方法进行了改进。结合了SiamFc网络结构和UDT无监督的目标跟踪思想,将模型的主干网络改进为AlexNet轻量级神经网络,通过前向跟踪、多帧后向验证方法实现目标跟踪。对比实验结果表明,设计的模型比改进前的模型以及其他经典的跟踪模型效果更佳。