计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (06): 1052-1059.
徐周波,李萍,刘华东,李珍
XU Zhou-bo,LI Ping,LIU Hua-dong,LI Zhen
摘要: 蛋白质复合物是细胞结构和生化机制的研究基础,如何准确识别蛋白质复合物成为近年来的研究热点。针对传统算法根据结构信息对蛋白质复合物进行搜索存在敏感度和F-measure低的问题,以及现有监督学习算法根据人为构造特征进行蛋白质复合物识别存在特征构造不能较好地反映图的真实信息等不足,提出了graph2vec-SVM识别算法。将蛋白质复合物看作稠密子图并考虑子图模块度大小,利用graph2vec将图信息转换为向量,并进一步采用SVM分类器对蛋白质复合物进行识别,提高了蛋白质复合物识别的敏感度和F-measure。该算法分别与目前流行的4种非监督学习算法(ClusterOne、CMC、HC-PIN和COACH)和3种监督学习算法(SCI-BN、SCI-SVM和RM)进行比较,在精准度、敏感度和F-measure 3项指标上都显示出了良好的性能。