• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (2): 91-95.

• 论文 • 上一篇    下一篇

一种改进的局部支持向量机算法

朱莹莹1, 尹传环1, 牟少敏2   

  1. (1.北京交通大学计算机与信息技术学院,北京 100044;
    2.山东农业大学信息科学与工程学院,山东 泰安 271018)
  • 收稿日期:2012-05-15 修回日期:2012-08-13 出版日期:2013-02-25 发布日期:2013-02-25
  • 基金资助:

    国家自然科学基金资助项目(61105056);中央高校基本科研业务费专项资金;山东农业大学青年科技创新基资助金项目(200923647);北京交通大学科技基金资助项目(2007RC066)

An improved algorithm of local support vector machine

ZHU Yingying1,YIN Chuanhuan1,MU Shaomin2   

  1. (1.School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044; 2.School of Computer and Information Engineering,Shandong Agriculture University,Taian 271018,China)
  • Received:2012-05-15 Revised:2012-08-13 Online:2013-02-25 Published:2013-02-25

摘要:

局部支持向量机是一种用途广泛的分类器,无论在理论研究还是实际应用方面,局部支持向量机都受到越来越多的关注。目前,许多传统的局部支持向量机算法都存在一个问题,即模型中样本比例失衡,导致无法提高分类精度。在加权支持向量机的启发下,提出了将加权思想应用在局部支持向量机FalkSVM中的WFalkSVM算法,并通过实验分析验证了WFalkSVM的可行性及其有效性,最后对WFalkSVM算法进行分析总结。

 

关键词: 支持向量机, 局部支持向量机, FalkSVM, WFalkSVM

Abstract:

Local support vector machine is a widely used classifier. It has been attracting more and more attention both on its theoretical research and practical applications. Nowadays, there exists a problem in many traditional local support vector machine algorithms: the imbalance of the number of the samples leads to the difficulty in improving the classification accuracy. In this paper, firstly, under the inspiration of weighted support vector machine, the algorithm named WFalkSVM is proposed, which uses weight in FalkSVM. Secondly, the experiments demonstrates the feasibility and effectiveness. At last, we conclude the weighted FalkSVM.

Key words: support vector machine;local support vector machine;falkSVM; WFalkSVM