• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (06): 1112-1120.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于确定性拥挤的多模态郊狼优化算法

陈丹妮1,赵剑冬1,高静2   

  1. (1.广东技术师范大学计算机科学学院,广东 广州 510665;2.广东恒电信息科技股份有限公司,广东 广州 510630)

  • 收稿日期:2020-05-06 修回日期:2020-06-20 接受日期:2021-06-25 出版日期:2021-06-25 发布日期:2021-06-23
  • 基金资助:
    国家社会科学基金(AJA190013);广东省科技计划(2015B010131017);广东省联合培养研究生示范基地“广东恒电信息科技股份有限公司”(991512712;991510307);广东省教育厅重点领域专项(2020ZDZX1062)

A deterministic crowding based coyote optimization algorithm for multimodal problem

CHEN Dan-ni1,ZHAO Jian-dong1,GAO Jing2   

  1. (1.School of Computer Science,Guangdong Polytechnic Normal University,Guangzhou 510665;

    2.Guangdong Hengdian Information Technology Co.,Ltd.,Guangzhou 510630,China)


  • Received:2020-05-06 Revised:2020-06-20 Accepted:2021-06-25 Online:2021-06-25 Published:2021-06-23

摘要: 为了解决多模态优化问题,对郊狼优化算法进行研究,提出了一种基于确定性拥挤的多模态郊狼优化算法—DCCOA。将小生境技术的确定性拥挤方法引入郊狼优化算法中,定义了新的郊狼进化机制,改进了郊狼群组文化趋势的计算方法。同时,为了更真实地模拟郊狼的种群生活,算法还定义了2只阿尔法郊狼并且采用了权重法更新郊狼的社会状况。最后将DCCOA与其它智能优化算法在多个典型基准函数上进行不同决策变量维数的多次对比实验。实验结果表明,小生境技术的引入进一步促进了算法在探索和勘探之间的平衡,提升了郊狼优化算法在多模态情况下的全局寻优能力,从而比原算法具有更好的收敛精度、更快的收敛速度和更强的稳定性。


关键词: 郊狼优化算法, 多模态优化, 确定性拥挤, 小生境

Abstract: In order to solve the multimodal optimization problem, a Deterministic Crowding based Coyote Optimization Algorithm (DCCOA) is proposed. Deterministic crowding, which is a niching technology, is integrated into the Coyote Optimization Algorithm (COA) to propose a new coyote evolution mechanism. Meanwhile, the calculation method of the cultural trend of the coyote pack is improved. In addition, the weight method is used to update the social conditions of coyote for simulating the population life of coyote more realistically. Experiments on typical benchmark functions with different dimensions of decision variables are carried out by the DCCOA and other intelligent optimization algorithms. The experimental results show that the niching technology employed in the DCCOA further promotes the COA balance between exploration and exploitation and improves the global optimization ability of the COA in multimodal situation. The proposed algorithm improves the convergence accuracy, convergence speed and stability.

Key words: coyote optimization algorithm, multimodal optimization, deterministic crowding, niching