计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (06): 1112-1120.
陈丹妮1,赵剑冬1,高静2
CHEN Dan-ni1,ZHAO Jian-dong1,GAO Jing2
摘要: 为了解决多模态优化问题,对郊狼优化算法进行研究,提出了一种基于确定性拥挤的多模态郊狼优化算法—DCCOA。将小生境技术的确定性拥挤方法引入郊狼优化算法中,定义了新的郊狼进化机制,改进了郊狼群组文化趋势的计算方法。同时,为了更真实地模拟郊狼的种群生活,算法还定义了2只阿尔法郊狼并且采用了权重法更新郊狼的社会状况。最后将DCCOA与其它智能优化算法在多个典型基准函数上进行不同决策变量维数的多次对比实验。实验结果表明,小生境技术的引入进一步促进了算法在探索和勘探之间的平衡,提升了郊狼优化算法在多模态情况下的全局寻优能力,从而比原算法具有更好的收敛精度、更快的收敛速度和更强的稳定性。