• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (07): 1250-1255.

• 计算机网络与信息安全 • 上一篇    下一篇

基于深度Q学习的室内无线网络资源分配算法

吕亚平1,贾向东1,2,路艺1,敬乐天1   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070; 

    2.南京邮电大学江苏省无线通信重点实验室,江苏 南京 210003)

  • 收稿日期:2020-06-03 修回日期:2020-07-15 接受日期:2021-07-25 出版日期:2021-07-25 发布日期:2021-08-17
  • 基金资助:
    国家自然科学基金(61861039);甘肃省科技计划(18YF1GA060);西北师范大学青年教师科研能力提升计划创新团队项目“下一代无线网络关键技术”

A deep Q-Learning based resource allocation algorithm in indoor wireless networks

Lv Ya-ping1,JIA Xiang-dong1,2,LU Yi1,JING Le-tian1   

  1. (1.College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070;

    2.Wireless Communication Key Laboratory of Jiangsu Province,
    Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
  • Received:2020-06-03 Revised:2020-07-15 Accepted:2021-07-25 Online:2021-07-25 Published:2021-08-17

摘要: 针对室内无线网络中的能量消耗过大问题,提出了一种基于深度Q学习的家庭基站发射功率分配算法。首先构造深度学习网络(DLN),优化室内无线网络的能量效率;然后将能量消耗指数作为奖罚值,利用批量梯度下降法不断地训练DLN的权值。最后仿真结果表明,所提出的算法可以动态调整发射功率,在收敛速度和能量消耗优化方面明显优于Q学习算法和注水算法,可以有效地降低室内无线网络的能耗。

关键词: 室内无线网络, 能量消耗, 功率分配, 深度Q学习

Abstract: To overcome the serve energy consumption problem in indoor wireless networks, a deep Q-Learning based transmit power allocation algorithm for home base station is proposed. Firstly, a deep learning network (DLN) is built to optimize the energy efficiency of indoor wireless networks. Then, the energy consumption rating is regarded as the rewards, the batch gradient descent method is used to continuously train the weights of DLN. Finally, the simulation results show that the proposed algorithm can dynamically adjust the transmit power, and is significantly superior to Q-Learning and water-filling algorithms in terms of convergence speed and EC optimization, which can effectively reduce the energy consumption of indoor wireless networks.


Key words: indoor wireless network, energy efficiency, power allocation, deep Q-Learning