• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (07): 1256-1263.

• 图形与图像 • 上一篇    下一篇

基于各向异性和边缘强度修正因子的边缘检测算法

李凯1,2,张永生2,童晓冲2,李峰1   

  1. (1.军事科学院系统工程研究院后勤科学与技术研究所,北京 100071;

    2.战略支援部队信息工程大学地理空间信息学院,河南 郑州 450001)

  • 收稿日期:2020-06-10 修回日期:2020-07-23 接受日期:2021-07-25 出版日期:2021-07-25 发布日期:2021-08-17

An edge detection algorithm based on anisotropy and edge strength correction factor

LI Kai1,2,ZHANG Yong-sheng2,TONG Xiao-chong2,LI Feng1   

  1. (1.Institute of Logistic Science and Technology,Academy of System Engineering,Academy of Military Sciences,Beijing 100071;

    2.School of Geospatial Information,PLA SSF Information Engineering University,Zhengzhou 450001,China)

  • Received:2020-06-10 Revised:2020-07-23 Accepted:2021-07-25 Online:2021-07-25 Published:2021-08-17

摘要: 融合了各向同性和各向异性高斯滤波器的边缘检测算法IAGK存在边缘拉伸效应,引起复杂边缘处产生伪边缘,各向同性高斯导数滤波器的引入,也导致算法对噪声的鲁棒性下降。同时,IAGK算法的各向异性因子非最优取值,理论上不具有最优信噪比和最优定位性能。
基于自动各向异性高斯核选择最优各向异性因子,并加入边缘强度修正因子修正IAGK算法的边缘强度公式,抑制伪边缘的产生和噪声的影响。利用经典边缘检测数据集对提出的边缘检测算法进行测试,实验结果显示,与Canny、AAGK和IAGK算法相比,提出的算法具有更好的噪声鲁棒性和更强的弱边缘检测能力,同时可进一步抑制伪边缘效应。在含噪声情况下,所提算法的边缘品质因子(FOM)分别比Canny、AAGK和IAGK算法高3%,4%和7%。


关键词: 边缘检测, 各向异性因子, 边缘拉伸, ROC曲线, 边缘品质因子, 边缘强度图

Abstract: The edge detection algorithm IAGK combining isotropic and anisotropic Gaussian filters has edge stretching effect, which causes false edges at complex edges. The introduction of isotropic Gaussian derivative filters also declines the robustness of the algorithm. At the same time, the anisotropic factor of IAGK algorithm is non-optimal value, and theoretically does not have optimal SNR and positioning performance. In this paper, the optimal anisotropic factor is selected based on the automatic anisotropic Gaussian kernel, and the edge strength correction factor is used to modify the edge strength formula of the IAGK algorithm to suppress the generation of false edges and the influence of noise. The proposed edge detection algorithm is tested on classical edge detection datasets. The experimental results show that, compared with Canny, AAGK and IAGK algorithms, the proposed algorithm has better noise robustness and better weak edge detection capability. The pseudo edge effect can also be further reduced. In the case of noise, the figure of merit (FOM) of the proposed algorithm is 3%, 4% and 7% higher than the Canny, AAGK and IAGK algorithms, respectively.


Key words: edge detection, anisotropy factor, edge stretching, ROC curve, figure of merit(FOM), edge strength map