• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (02): 298-305.

• 图形与图像 • 上一篇    下一篇

WiFi环境下基于CGRU-ELM混合模型的手势识别

张鑫,冯秀芳   

  1. (太原理工大学信息与计算机学院,山西 晋中 030600)

  • 收稿日期:2020-07-17 修回日期:2020-10-25 接受日期:2022-02-25 出版日期:2022-02-25 发布日期:2022-02-18
  • 基金资助:
    山西省重点研发计划(201903D121121);虚拟现实技术与系统国家重点实验室(北京航空航天大学)开放基金(VRLAB2019A05)

Gesture recognition based on CGRU-ELM hybrid model in WiFi environment

ZHANG Xin,FENG Xiu-fang   

  1. (School of Information and Computer,Taiyuan University of Technology,Shanxi 030600,China)



  • Received:2020-07-17 Revised:2020-10-25 Accepted:2022-02-25 Online:2022-02-25 Published:2022-02-18

摘要: 针对传统手势识别方法存在的耗能大、部署困难等问题,提出了一种基于WiFi的手势识别方法。通过从WiFi信号中收集到的信道状态信息中抽取多普勒频移组件,解决无线手势识别方法中提取的统计特征与具体手势动作映射关系不明确的问题。同时,提出了一种CGRU-ELM的深度混合模型,对提取到的多普勒频移组件进行特征提取和分类,并对常用的6种人机交互手势进行了识别。实验结果表明,该方法对于以WiFi信号为输入参数的手势识别平均准确度达到了93.4%。

关键词: 信道状态信息, 多普勒频移, 手势识别, 深度学习

Abstract: Aiming at the problems of high energy consumption and difficult deployment in traditional gesture recognition methods , a WiFi-based gesture recognition method is proposed. By extracting the Doppler frequency shift components from the fine-grained channel state information collected from WiFi signal, the problem of unclear mapping relationship between the statistical features extracted by wireless gesture recognition method and specific gestures is solved. Meanwhile, a deep hybrid model of CGRu-ELM is proposed to extract and classify the extracted Doppler frequency shift components, and to recognize six commonly used human-computer interaction gestures. The experimental results show that the average 
accuracy of this method for gesture recognition with WiFi signal as input parameter is 93.4%.


Key words: channel state information, Doppler frequency shift, gesture recognition, deep learning