• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (12): 2287-2294.

• 人工智能与数据挖掘 • 上一篇    

基于深度学习的网购评论命名实体识别方法

仇增辉,赫明杰,林正奎   

  1. (大连海事大学信息科学技术学院,辽宁 大连 116026)
  • 收稿日期:2020-02-18 修回日期:2020-04-17 接受日期:2020-12-25 出版日期:2020-12-25 发布日期:2021-01-05

A named entity recognition method for online shopping comments based on deep learning

QIU Zeng-hui,HE Ming-jie,LIN Zheng-kui   

  1. (College of Information Science and Technology,Dalian Maritime University,Dalian 116026,China)
  • Received:2020-02-18 Revised:2020-04-17 Accepted:2020-12-25 Online:2020-12-25 Published:2021-01-05

摘要: 针对网购评论命名实体识别中重要词汇被忽略的问题,在评论短文本处理基础上,借鉴多头注意力机制、词汇贡献度和双向长短时记忆条件随机场提出一种基于MA-BiLSTM-CRF模型的网购评论命名实体识别方法。首先,用词向量和词性向量的组合来表示评论文本语义信息;其次,用BiLSTM提取文本特征;然后,引入多头注意力机制从多层面、多角度提升模型性能;最后,用条件随机场(CRF)识别命名实体。实验结果表明,该方法能提升网购评论实体识别效果。

关键词: 命名实体识别, 双向长短时记忆, 多头注意力机制, 条件随机场, 深度学习

Abstract: In order to solve the problem that the important words of short text are ignored when recognizing the named entities of online shopping comments, by referring to the multi-head attention mechanism, contribution of important vocabularies, and 
bidirectional long-term and short-term memory conditional random field model, a named entity recognition method for online shopping comments based on MA-BiLSTM-CRF is proposed. Firstly, the combination of word vectors and part-of-speech vectors is used to represent the semantic information of the comment text. Secondly, the bidirectional long short-term memory (BiLSTM) network is used to extract text features. Then, the multi-head attention mechanism is introduced to improve the model performance from multiple levels and perspectives. Finally, the named entities are identified based on conditional random field (CRF). Experimental results show that this method can improve the recognition effect of online shopping review entities.




Key words: named entity recognition, bidirectional long short-term memory, multi-head attention mechanism, conditional random field, deep learning