计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (02): 291-297.
严春满,张昱瑶,张迪
YAN Chun-man,ZHANG Yu-yao,ZHANG Di
摘要: 针对噪声污染、光照变化等复杂环境下人脸图像识别问题,提出一种改进标签一致KSVD字典学习的人脸识别算法。该算法通过改变标签一致KSVD算法的字典更新方式,用主成分分析算法分解误差项,用最大特征值对应的特征向量修改字典原子。通过字典学习过程得到原子与类别标签对应的判别性字典。目标函数综合了重建误差、稀疏编码误差和分类误差。最后,在分类阶段利用学习到的字典和分类器参数对测试样本进行分类。在有光照变化的Extend Yale B人脸库、表情变化以及遮挡影响的AR人脸库上分别取得了99.01%和97.94%的平均识别率。同时,在有噪声存在的情况下,该算法具有较好的鲁棒性。