• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 1968-1975.

• 计算机网络与信息安全 • 上一篇    下一篇

萤火虫算法优化支持向量机室内定位研究

仲臣1,2,3,余学祥1,2,3,邰晓曼1,2,3,韩雨辰1,2,3,肖星星1,2,3,刘清华1,2,3   

  1. (1.安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001;
    2.安徽理工大学矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室,安徽 淮南 232001;
    3.安徽理工大学矿区环境与灾害协同监测煤炭行业工程研究中心,安徽 淮南 232001)

  • 收稿日期:2021-07-01 修回日期:2021-11-24 接受日期:2022-11-25 出版日期:2022-11-25 发布日期:2022-11-25
  • 基金资助:
    国家自然科学基金(41474026);安徽省自然科学基金(2008085MD114)

Indoor positioning of support vector machine optimized by firefly algorithm

  1. (1.School of Geomatics,Anhui University of Science and Technology,Huainan 232001;
    2.Key Laboratory of Aviation-aerospace-ground Cooperative Monitoring and Early Warning of Coal Mining-induced 
    Disasters of Anhui Higher Education Institutes,Anhui University of Science and Technology,Huainan 232001;
    3.Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring,
    Anhui University of Science and Technology,Huainan 232001,China)
  • Received:2021-07-01 Revised:2021-11-24 Accepted:2022-11-25 Online:2022-11-25 Published:2022-11-25

摘要: 针对室内定位指纹库匹配冗余信息多造成定位浮动大,且数据库中样本数过多定位时效性差等问题,提出一种基于萤火虫算法FA优化支持向量机SVM的室内定位算法FA-SVM。利用奇异谱分析SSA预处理数据去除噪声,通过萤火虫算法优化支持向量机参数,建立室内定位回归模型。实验结果表明,相对于目前其它室内定位算法,FA-SVM算法收敛速度快,提高了室内定位精度和稳定性。

关键词: 室内定位, 去噪, 萤火虫算法, 支持向量机, 定位精度

Abstract: Aiming at the problems of large positioning fluctuation caused by excessive matching redundant information in indoor positioning fingerprint database and poor positioning timeliness caused by excessive sample number in database, This paper proposes a new indoor positioning method based on support vector machine (SVM) optimized by firefly algorithm (FA). Singular Spectrum Analysis (SSA) is used to remove noise during data preprocessing and the SVM parameters are optimized by FA, so as to establish the indoor positioning regression model. The experimental results show that, compared with the current indoor positioning method, FA-SVM algorithm has fast convergence speed and improves the indoor positioning accuracy and stability.

Key words: indoor positioning, denoising, firefly algorithm, support vector machine, positioning accuracy