• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (03): 537-545.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于广义正交三角模糊数的WSM-TOPSIS群决策方法

万本庭,万春涛   

  1. (江西财经大学深圳研究院,广东 深圳  518000)
  • 收稿日期:2021-04-15 修回日期:2021-09-14 接受日期:2023-03-25 出版日期:2023-03-25 发布日期:2023-03-23
  • 基金资助:
    国家自然科学基金(61363075);深圳市中央引导地方科技发展基金(2021Szvup052)

A WSM-TOPSIS group decision-making method based on q-rung orthogonal triangular fuzzy numbers

WAN Ben-ting,WAN Chun-tao   

  1. (Shenzhen Research Institute,Jiangxi University of Finance and Economics,Shenzhen 518000,China)
  • Received:2021-04-15 Revised:2021-09-14 Accepted:2023-03-25 Online:2023-03-25 Published:2023-03-23

摘要: 结合广义正交模糊集和三角直觉模糊数,给出广义正交三角模糊数的定义和运算法则,在此基础上,对WSM和TOPSIS方法进行拓展,提出一种多属性群决策方法WSM-TOPSIS。考虑到决策者和属性的权重,该方法使用WSM对决策者提出的决策矩阵进行第一次集结,通过TOPSIS计算各方案的相对贴近度得到方案的优劣排序。最后通过实例和对比分析验证了该方法的有效性和实用性。

关键词: 广义正交三角模糊数; WSM; TOPSIS; 多准则决策; 群决策 ,  ,  ,  

Abstract: Combining q-Rung orthogonal fuzzy sets and triangular intuitionistic fuzzy numbers, the definition and algorithm of q-Rung orthogonal triangular fuzzy numbers are given. On this basis, the WSM and TOPSIS methods are extended, and a WSM-TOPSIS multi-attribute group decision-making method is proposed. Considering the weights of decision makers and attributes, this method uses WSM to gather the decision matrix proposed by the decision makers for the first time, and calculates the relative closeness of each scheme according to TOPSIS to get the ranking of the pros and cons of the scheme. Finally, the effectiveness and practicability of the method are verified by an example and comparative analysis.

Key words: q-rung orthogonal triangular fuzzy number, weighted sum method(WSM), technique for order preference by similarity to ideal solution(TOPSIS), multi-criteria decision making(MCDM), group decision-making(GDM)