计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (05): 849-858.
刘南艳,魏鸿飞,马圣祥
LIU Nan-yan,WEI Hong-fei,MA Sheng-xiang
摘要: 面部表情是人类表达情感最重要的方式之一。面部表情变化受多个面部器官和面部肌肉运动的影响。为了能有效提取局部动态特征和解决面部表情部分遮挡问题,提出一种简单有效的融合局部动态特征的深度学习网络,通过构建引导注意网络,利用检测到的脸部关键点来引导网络关注无遮挡的面部区域。为了强化不同表情特征之间的联系,利用局部动态特征网络,在带有时间序列的关键帧中提取如眼睛、嘴巴等关键区域的动态信息和时空信息。最后,将局部动态特征补充到整体网络中。融合后的网络在CK+、Oulu-CASIA、RAF-DB和AffectNet数据集上的精度分别为98.08%,90.59%,86.02%和61.28%,相较于其它网络的识别率均有提高。