• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1797-1805.

• 计算机网络与信息安全 • 上一篇    下一篇

结合对比监督和排序树的轨迹数据差分隐私保护方案

王辉1,陈宇2,申自浩2,刘沛骞1   

  1. (1.河南理工大学软件学院,河南 焦作 454000;2.河南理工大学计算机科学与技术学院,河南 焦作 454000)
  • 收稿日期:2022-09-09 修回日期:2022-12-15 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    国家自然科学基金(61300216);河南省高等学校重点科研项目(23A520033);河南理工大学博士基金(B2022-16,B2020-32)

A trajectory data differential privacy protection scheme that combines contrast supervision and sorting tree

WANG Hui1,CHEN Yu2,SHEN Zi-hao2,LIU Pei-qian1   

  1.  (1.School of Software,Henan Polytechnic University,Jiaozuo 454000;
    2.School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China)
  • Received:2022-09-09 Revised:2022-12-15 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 随着各种具有位置定位服务设备的普及,用户享受设备带来便利的同时,也会引发位置隐私泄露的问题。针对这一问题,提出了一种结合对比监督和排序树的轨迹数据差分隐私保护方案(SDTS)。首先,利用监督学习模型对轨迹数据进行预处理,使用模型中的损失函数对轨迹数据进行轨迹相似度计算;其次,基于二叉排序树结构对轨迹数据进行存储,提高轨迹查询效率;最后,利用差分隐私技术和等比隐私预算分配方式对排序树节点中移动用户的统计值进行加噪处理,保护节点中存储的敏感信息,保证数据隐私安全的同时提高数据的可用性。实验结果表明,该方案能有效保护用户的数据隐私安全,并能保证轨迹数据的可用性。

关键词: 对比损失函数, 差分隐私, 二叉排序树, 轨迹数据, 等比分配

Abstract: With the popularization of various devices that provide location positioning services, while users enjoy the convenience brought by these devices, it also raises the issue of location privacy leakage. To address this problem, a trajectory data differential privacy protection scheme (SDTS) that combines contrast supervision and sorting tree is proposed. First, the supervised learning model is used to preprocess the trajectory data, and the loss function in the model is used to calculate the trajectory similarity and obtain the result. Second, a binary search tree structure is used to store the trajectory data, improv- ing the efficiency of trajectory queries. Finally, differential privacy technology and an equal privacy budget allocation method are used to add noise to the statistical values of moving users in the sorted tree nodes, protecting sensitive information stored in the nodes and ensuring data privacy security while improving data usability. Experimental results show that this scheme effectively protects users data privacy security and ensures the usability of trajectory data.

Key words: contrast loss function, differential privacy, binary sort tree, trajectory data, proportional allocation