• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1830-1837.

• 图形与图像 • 上一篇    下一篇

基于多尺度深度可分离卷积的低照度图像增强算法

陈清江,顾媛   

  1. (西安建筑科技大学理学院,陕西 西安 710055)
  • 收稿日期:2022-09-29 修回日期:2022-11-25 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    国家自然科学基金(61902304);陕西省自然科学基础研究计划(2021JQ-495)

A low-light image enhancement algorithm based on multi-scale depthwise separable convolution

CHEN Qing-jiang,GU Yuan   

  1. (School of Science,Xi’an University of Architecture and Technology,Xi’an 710055,China)
  • Received:2022-09-29 Revised:2022-11-25 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特征提取模块,提取不同尺度的特征信息;最后,对不同尺寸的特征图使用2种模块,将低层空间信息与高层语义信息充分融合,获得最终输出。用深度可分离卷积代替标准卷积可大大减少网络参数量与计算量。实验结果表明,所提算法能有效地提高图像的亮度和对比度,减少模型参数量,且图像纹理细节及色彩恢复较好。

关键词: 低照度图像增强, 深度可分离卷积, 空洞卷积, 多尺度, 网格效应

Abstract: To address the issues of color distortion and low contrast in low-light images, and severe detail loss and excessive parameters of existing enhancement algorithms, a low-light image enhancement algorithm based on multi-scale depthwise separable convolution is proposed. Firstly, a multi-scale hybrid dilated convolution module is designed to expand the receptive field while addressing grid effects. Secondly, a multi-scale feature extraction module is designed to extract feature information at different scales. Finally, the two modules are used to fully integrate low-level spatial information with high-level semantic information for different-sized feature maps to obtain the final output. The use of depthwise separable convolution instead of standard convolution greatly reduces the network parameter count and computational cost. Experimental results show that the proposed algorithm effectively improves the brightness and contrast of images, reduces the number of model parameters, and restores image texture details and color well.

Key words: low-light image enhancement, depthwise separable convolution, dilated convolution, multi-scale, gridding problem