• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (10): 1838-1846.

• 图形与图像 • 上一篇    下一篇

基于YOLOv5s的密集多人脸检测算法

董子平,陈世国,廖国清   

  1. (贵州师范大学物理与电子科学学院,贵州 贵阳 550025)
  • 收稿日期:2022-10-31 修回日期:2022-12-12 接受日期:2023-10-25 出版日期:2023-10-25 发布日期:2023-10-17
  • 基金资助:
    贵州省科学技术基金(黔科合J字[2010]2145)

A dense multi-face detection algorithm based on YOLOv5s

DONG Zi-ping,CHEN Shi-guo,LIAO Guo-qing   

  1. (School of Physics and Electronic Science,Guizhou Normal University,Guiyang 550025,China)
  • Received:2022-10-31 Revised:2022-12-12 Accepted:2023-10-25 Online:2023-10-25 Published:2023-10-17

摘要: 针对在密集场景下多人脸检测容易漏检,小尺度人脸检测率不高的问题,提出了基于YOLOv5s改进的多人脸检测算法IYOLOv5s-MF。首先,在特征融合部分引入FTT模块,以获取小尺度人脸更多的特征表征;然后,改进正负样本采样策略,通过增加有效正样本,增强算法的模型泛化能力;最后,将Focal-EIoU作为定位损失函数,在加速模型收敛的同时提升人脸检测率。在WIDER FACE数据集上进行人脸检测实验,实验结果表明,相比较其他对比算法,IYOLOv5s-MF算法拥有较高的人脸检测精度,且具有较好的实时性能。

关键词: 人脸检测, YOLOv5s, 特征融合, Focal-EIoU

Abstract: To address the problem of missed detection in dense scenes and low detection rate for small-scale faces, an improved multi-face detection algorithm based on YOLOv5s, named IYOLOv5s-MF, is proposed. First, the feature texture transfer (FTT) module is introduced into the feature fusion part to obtain more feature representations for small-scale faces. Then, the positive and negative sample sampling strategy is improved by increasing the number of effective positive samples to enhance the model's generalization ability. Finally, Focal-EIoU is adopted as the localization loss function to accele- rate model convergence and improve face detection accuracy. Experimental results on the WIDER FACE dataset show that compared with other comparison algorithms, IYOLOv5s-MF has higher face detection accuracy and good real-time performance.

Key words: face detection, YOLOv5s, feature fusion, Focal-EIoU