计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1864-1874.
冯兴杰,曹若轩
FENG Xing-jie,CAO Ruo-xuan
摘要: 用于分类的文本往往存在语义模糊、特征稀疏的问题,并且句中的某些词语含义会与文本真实标签所代表的语义不一致,这都会导致分类错误。针对上述问题,提出一种融合特征投影和负监督的多任务文本分类模型,主任务利用特征投影网络提取类别特征明显的纯化向量并进行分类;辅助任务给予模型负监督,以扩大不同类别文本的向量差别,消除个别词语的负面影响。此外,使用RoBERTa和BiLSTM同时对正、负样本进行特征提取,捕捉丰富的语义信息。在THUCNews新闻标题分类和微粒贷语义相似度分析数据集上进行了实验,结果表明本文模型相比现有模型具有更好的效果。