• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1875-1887.

• 人工智能与数据挖掘 • 上一篇    下一篇

多策略改进的猎人猎物优化算法

王坤1,刘杰2,李伟3,谭 伟4,覃涛1,杨靖1,5   

  1. (1.贵州大学电气工程学院,贵州 贵阳 550025;2.中国电建集团贵州工程有限公司,贵州 贵阳 550025;
    3.贵州大学农学院,贵州 贵阳 550025;4.贵州大学林学院,贵州 贵阳 550025;
    5.贵州省互联网+协同智能制造重点实验室,贵州 贵阳 550025)

  • 收稿日期:2023-09-12 修回日期:2023-11-07 接受日期:2024-10-25 出版日期:2024-10-25 发布日期:2024-10-30
  • 基金资助:
    国家自然科学基金(61640014,61963009);贵州省教育厅创新群体(黔教合KY字[2021]012);贵州省科技支撑计划(黔科合支撑[2022]一般017,黔科合支撑[2023]一般411,黔科合支撑[2019]2152);贵州省教育厅工程研究中心(黔教技[2022]043,黔教技[2022]040);中国电建集团科技项目(DJ-ZDXM-2020-19,No.DJ-ZDXM-2022-44);贵州省双碳研究院开放课题(DCRE-2023-13)

A multi-strategy improved hunter-prey optimization algorithm

WANG Kun1,LIU Jie2,LI Wei3,TAN Wei4,QIN Tao1,YANG Jing1,5   

  1. (1.The Electrical Engineering College,Guizhou University,Guiyang 550025;
    2.PowerChina Guizhou Engineering Co.,LTD,Guiyang 550025;
    3.College of Agriculture,Guizhou University,Guiyang 550025;
    4.College of Forestry,Guizhou University,Guiyang 550025;
    5.Guizhou Provincial Key Laboratory of Internet+Intelligent Manufacturing,Guiyang 550025,China)
  • Received:2023-09-12 Revised:2023-11-07 Accepted:2024-10-25 Online:2024-10-25 Published:2024-10-30

摘要: 针对猎人猎物优化算法HPO存在收敛速度慢且易陷入局部最优的问题,提出一种多策略改进的猎人猎物优化算法IHPO。首先,利用佳点集初始化种群,增强种群的多样性;其次,引入非线性控制参数策略优化搜索与开发平衡参数,调整全局搜索和局部搜索权重,提高收敛速度;然后,引入莱维飞行策略和贪婪策略更新猎人位置,让种群跳出局部最优,再引入黄金正弦策略更新猎物位置,提升IHPO的局部开发能力。将IHPO和另外6种智能算法在测试函数集上进行寻优对比和Wilcoxon秩和检验,检验结果表明IHPO有较好的寻优能力和收敛速度;将IHPO运用于2个实际工程优化问题的求解,仿真结果表明IHPO在解决工程优化问题有较好的适用性和求解稳定性。

关键词: 猎人猎物优化算法, 佳点集, 非线性搜索与开发平衡参数, 莱维飞行策略, 贪婪策略, 黄金正弦策略

Abstract: Addressing the issues of slow convergence speed and the tendency to fall into local optima in the Hunter-Prey Optimizer (HPO), a multi-strategy improved hunter-prey optimization algorithm (IHPO) is proposed. Firstly, the good point set is used to initialize the population to enhance the diversity of the population. Secondly, the nonlinear control parameter strategy is introduced to optimize search, develop balance parameters, adjust global-local searching weights, and improve the convergence speed. Then, the Levy flight strategy and the greedy strategy are introduced to update the hunter position, which make it possible for the population to jump out of the local optimal, and the golden sine strategy is introduced to update the prey position and improve the local exploitation ability. The benchmark functions are used for optimization comparison, and the Wilcoxon rank sum test between IHPO and other six intelligent algorithms is used. The simulation results show that IHPO has better optimization ability and convergence speed. Finally, IHPO is applied to two practical engineering optimization problems, and the simulation results show that IHPO has good applicability and stability in solving engineering optimization problem.

Key words: hunter-prey optimization, good point set, nonlinear search and development of balance parameters, levy flight strategy, greedy strategy, golden sine strategy