• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1852-1863.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于时空Transformer的多空间尺度交通预测模型

张悦1,2,张磊1,2,刘佰龙1,2,梁志贞1,2,张雪飞3


  

  1. (1.中国矿业大学矿山数字化教育部工程研究中心,江苏 徐州 221116;
    2.中国矿业大学计算机科学与技术学院,江苏 徐州 221116;3.江苏恒旺数字科技有限责任公司,江苏 苏州 215000)
  • 收稿日期:2023-03-24 修回日期:2023-09-05 接受日期:2024-10-25 出版日期:2024-10-25 发布日期:2024-10-30
  • 基金资助:
    中国矿业大学建设双一流专项资金(2018ZZCX14)

Multi-spatial scale traffic prediction model based on spatio-temporal Transformer

ZHANG Yue1,2,ZHANG Lei1,2,LIU Bai-long1,2,LIANG Zhi-zhen1,2,ZHANG Xue-fei3   

  1. (1.Engineering Research Center of Mine Digitalization(Ministry of Education),
    China University of Mining and Technology,Xuzhou 221116;
    2.School of Computer Science & Technology,China University of Mining and Technology,Xuzhou 221116;
    3.Jiangsu Hengwang Digital Technology Co.,Suzhou 215000,China)
  • Received:2023-03-24 Revised:2023-09-05 Accepted:2024-10-25 Online:2024-10-25 Published:2024-10-30

摘要: 准确的交通预测对提高智能交通系统的效率至关重要。交通系统的空间依赖不仅体现在道路的相连关系上,更重要的是由道路属性、区域功能等因素形成的隐藏空间依赖。另外,交通数据之间的时间依赖具有严格的相对位置关系,忽略这一问题将难以实现准确的交通预测。为了解决这些问题,提出了一种基于时空Transformer的多空间尺度交通预测模型(MSS-STT)。MSS-STT使用多个特定的Transformer网络对不同的空间尺度建模,以捕捉隐藏空间依赖,同时使用图卷积网络来学习静态空间特征。接着,使用门控机制将不同空间尺度的空间依赖与静态空间特征根据各自对预测的重要性进行融合。最后,根据时间序列中不同相对位置对预测的不同贡献来提取不同的时间依赖关系。在PeMS数据集上的实验结果表明,MSS-STT优于最先进的基线。

关键词: 交通数据预测, 时空依赖, 时空Transformer, 图神经网络

Abstract: Accurate traffic prediction is crucial for improving the efficiency of intelligent transportation systems. The spatial dependence of the transportation system is not only reflected in the connectivity of roads, but more importantly, in the hidden spatial dependence formed by factors such as road attributes and regional functions. In addition, the time dependence between traffic data has a strict relative positional relationship, and ignoring this issue will make it difficult to achieve accurate traffic prediction. To address these issues, a multi-spatial scale traffic prediction model based on spatio-temporal Transformer (MSS-STT) is proposed. MSS-STT uses multiple specific Transformer networks to model different spatial scales to capture hidden spatial dependencies, while using graph convolutional networks to learn static spatial features. Then, a gating mechanism is used to fuse spatial dependencies and static spatial features at different spatial scales based on their respective importance for prediction. Finally, different time dependencies are extracted according to the different contributions of different relative positions in the time series to the prediction. The experimental results on PeMS dataset indicate that MSS-STT outperforms state-of-the-art baselines.

Key words: traffic data prediction, spatio-temporal dependency, spatio-temporal Transformer, graph neural network