计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (12): 2158-2170.
沈凡凡1,汤星译1,张军2,徐超1,陈勇1,何炎祥3
SHEN Fan-fan1,TANG Xing-yi1,ZHANG Jun2,XU Chao1,CHEN Yong1,HE Yan-xiang3
摘要: 近年来,数据平台与系统的规模飞速扩张,性能快速提升,安全性能也随之越发重要。现有的基于深度学习的恶意行为检测方案缺少与模型契合的优化算法,导致模型缺乏自优化能力。提出了一种基于改进萤火虫算法与改进长短期记忆网络的恶意行为检测方法iFA-LSTM,该方法可以有效地进行恶意行为的二分类检测。通过UNSW-NB15数据集来验证所提出的方法,方法在单攻击二分类实验中的平均识别准确率达到了99.56%,且在混合攻击二分类实验中平均识别准确率也达到了98.79%,同时也充分证明了iFA的有效性。所提出的方法可以快速有效地进行恶意行为检测,非常有希望应用于恶意行为的安全监控和识别。