• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2216-2226.

• 图形与图像 • 上一篇    下一篇

混合多策略的麻雀搜索算法与应用

娄莉,张慧茹


  

  1. (西安石油大学计算机学院,陕西 西安 710065)

  • 收稿日期:2024-03-27 修回日期:2025-01-23 出版日期:2025-12-25 发布日期:2026-01-06
  • 基金资助:
    陕西省2021年重点研发计划(2021GY-138);西安石油大学研究生创新与实践能力培养计划(YCS22214281)

A sparrow search algorithm based on hybrid multi-strategy and its application

LOU Li,ZHANG Huiru   

  1. (School of Computer Scinece,Xi’an Shiyou University,Xi’an  710065,China)
  • Received:2024-03-27 Revised:2025-01-23 Online:2025-12-25 Published:2026-01-06

摘要: 模糊c均值FCM聚类算法以其实现简单、符合实际等优点成为许多研究人员在进行图像分割时的选择,但传统的FCM算法也存在缺点:聚类中心随机初始化。为了恰当选取聚类中心,提出了一种混合多策略的麻雀搜索算法,利用麻雀搜索算法较强的寻优能力来优化FCM算法的初始聚类中心,提高FCM算法的分割效果。算法思路如下:首先,针对麻雀搜索算法后期种群多样性变差的问题,引入Fuch混沌映射;针对麻雀种群易在局部极值点震荡的问题,引入小孔成像反向学习对发现者位置进行更新;针对麻雀种群全局搜索能力较差的问题,引入高斯-柯西变异对跟随者位置进行更新;最终得到一种寻优精度和速度都较好的改进麻雀搜索算法,将FCM算法的目标函数作为改进麻雀搜索算法的寻优函数,进行自然场景和细胞图像分割实验,与标准的FCM算法相比,该算法的平均划分系数提升了5个百分点左右,鲁棒性也有所提升。


关键词: 麻雀搜索算法, 反向学习, 高斯-柯西变异, 模糊c均值, 图像分割

Abstract: The fuzzy c-means (FCM) clustering algorithm has become a popular choice among many scholars for image segmentation due to its simplicity in implementation and alignment with practical scenarios. However, the traditional FCM algorithm has a drawback:Random initialization of cluster centers. To appropriately select cluster centers, this paper proposes a hybrid multi-strategy sparrow search algorithm (SSA). By leveraging the strong optimization capability of the SSA, the initial cluster centers of the FCM algorithm are optimized to enhance its segmentation performance. The algorithm’s approach is as follows: First, to address the deterioration of population diversity in the later stages of the SSA, the Fuch chaotic map is introduced. To mitigate the tendency of the sparrow population to oscillate around local extrema, pinhole imaging opposition-based learning is employed to update the positions of discoverers. Additionally, to improve the global search capability of the sparrow population, GaussCauchy mutation is introduced to update the positions of followers. Ultimately, an improved SSA with enhanced optimization accuracy and speed is obtained. The objective function of the FCM algorithm is used as the optimization function of the improved SSA for natural scene and cell image segmentation experiments. Compared to the standard FCM algorithm, the proposed algorithm demonstrates an approximately 5 percentage point improvement in the average partition coefficient and enhanced robustness.


Key words: sparrow search algorithm, reverse learning, GaussCauchy variation, fuzzy c-means (FCM), image segmentation