• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2026, Vol. 48 ›› Issue (1): 119-132.

• 图形与图像 • 上一篇    下一篇

基于新的自适应组合损失函数的肺部气道CT图像分割方法

鲜领,徐修远,周凯,牛颢,郭际香


  

  1. (四川大学计算机学院,四川 成都 610065)

  • 收稿日期:2024-02-05 修回日期:2024-07-03 出版日期:2026-01-25 发布日期:2026-01-25
  • 基金资助:
    四川省科技计划重点研发项目(2020YFG0473)

A pulmonary airway CT image segmentation method based on a novel adaptive combined loss function

XIAN Ling,XU Xiuyuan,ZHOU Kai,NIU Hao,GUO Jixiang   

  1. (College of Computer Science,Sichuan University,Chengdu 610065,China)
  • Received:2024-02-05 Revised:2024-07-03 Online:2026-01-25 Published:2026-01-25

摘要: 基于计算机断层扫描CT影像进行肺部气道的分割对于肺部疾病诊疗具有重要意义。近年来基于深度学习的肺部气道分割方法取得了不少进步,但实现高精度的分割仍然面临巨大挑战。肺部气道CT影像存在的类别不平衡严重影响着分割性能。针对该问题,提出一种基于新的自适应组合损失函数的分割方法。首先,通过局部不平衡策略,提升模型对前景体素的辨别力。其次,将径向距离信息集成到焦点损失函数中,提高模型自动辨别细小气道的能力。最后,基于拓扑敏感度与拓扑精确度提升气道的拓扑连续性。实验结果表明,与现有最先进模型相比,所提出的方法使模型在骰子相似系数、分支检测率和树长检测率上均取得了最好的表现,提升了肺部气道分割性能。

关键词: 肺部气道分割, 深度学习, 类别不平衡, 气道连续性, 自适应组合损失函数

Abstract: Segmenting pulmonary airways from computed tomography (CT) images holds significant importance for the diagnosis and treatment of lung diseases. In recent years, deep learning-based methods for pulmonary airway segmentation have made considerable progress. However, achieving high- precision segmentation still poses substantial challenges. The class imbalance present in pulmonary airway CT images severely affects segmentation performance. To address this issue, a novel segmentation method employing an adaptive combined loss function is proposed. Firstly, by utilizing a local imbalance strategy, the model’s ability to discriminate foreground voxels is enhanced. Secondly, radial distance information is integrated into the focal loss function to improve the model’s capacity to automatically identify small airways. Finally, topological continuity of the airways is enhanced based on topology sensitivity and topology precision. Experimental results demonstrate that, compared to the state-of-the-art models, the proposed method’s model achieves the best performance in terms of the dice similarity coefficient (DSC), branch detection rate(BD), and tree length detection rate(TLD), thereby improving the performance of pulmonary airway segmentation.

Key words: pulmonary airway segmentation, deep learning, class imbalance, airway continuity, adaptive combined loss function