• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1638-1646.

• 图形与图像 • 上一篇    下一篇

一种适合大面积破损图像的多重修复网络

李志鹏1,陈丹阳1,2,钟诚1,2   

  1. (1.广西大学计算机与电子信息学院,广西 南宁 530004;
    2.广西大学广西高校并行分布式计算技术重点实验室,广西 南宁 530004)

  • 收稿日期:2023-12-26 修回日期:2024-06-19 出版日期:2025-09-25 发布日期:2025-09-22
  • 基金资助:
    广西科技发展战略研究专项课题(桂科ZL19107008)

A multiple restoration network for large broken images

LI Zhipeng1,CHEN Danyang1,2,ZHONG Cheng1,2   

  1. (1.School of Computer,Electronics and Information,Guangxi University,Nanning 530004;
    2.Key Laboratory of Parallel Distributed Computing Technology 
    in Guangxi Universities,Guangxi University,Nanning 530004,China)
  • Received:2023-12-26 Revised:2024-06-19 Online:2025-09-25 Published:2025-09-22

摘要: 为了修复大面积破损图像,提出了一种新的多重修复网络模型。首先该模型通过增加特征修复环节减少了修复错误在网络上采样过程中的积累;其次提出多尺度修复模块(MSRM),该模块能够综合不同视野的信息对特征图进行补全;然后利用注意力机制对修复块进行优化,解决了由不同区域修复程度不同导致的输出图像各区域色彩不协调问题;最后对损失函数进行改进,使模型更加注重对图像破损区域的修复。实验结果显示,在Places2和CelebA数据集上的修复图像的质量均有不同程度的提升,并且随着图像缺失像素比例增大,提升效果更加明显。

关键词: 图像修复, 深度学习, 注意力机制, 编码器-译码器结构

Abstract: To restore images with large damaged areas, this paper proposes a new multi-stage inpainting network model. Firstly, the model reduces the accumulation of inpainting errors during the upsampling process by extending the feature inpainting procedure. Secondly, the multi-scale restoration  module(MSRM) is proposed, which can synthesize the information from different receptive fields to complete the feature map. Thirdly, an attention mechanism is employed to optimize the inpainting process, resolving the issue of color inconsistency in the output image caused by non-uniform restoration across different regions. Finally, the loss function is improved to make the model focus more on repair- ing the damaged regions. Experimental results show that the quality of the restored images of the model on both Places2 and CelebA datasets is improved to different degrees, and the improvement effect is more obvious as the proportion of missing pixels in the image increases.

Key words: image inpainting, deep learning, attention mechanism, encoder-decoder structure