• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (2): 88-89.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

一种基于全局阈值二值化方法的BP神经网络车牌字符识别系统

  

  1. (山东建筑大学信息与电气工程学院,山东 济南 250101)
  • 收稿日期:2008-09-19 修回日期:2008-12-13 出版日期:2010-01-25 发布日期:2010-01-26
  • 通讯作者: 张坤艳 E-mail:zhangkunyan@sdjzu.edu.cn
  • 作者简介:张坤艳(1977),女,山东临沂人,讲师,研究方向为智能算法。

A PlateCharacter Identification System Based on  GlobalValve Binarization and the BP Neural Network

  1. (School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101;)
  • Received:2008-09-19 Revised:2008-12-13 Online:2010-01-25 Published:2010-01-26

摘要:

本文针对车牌字符识别系统在工程应用中存在识别准确率不高、效率低的问题,从工程实践的角度描述了一种新的基于BP神经网络的识别系统在车牌字符识别中的应用。详细介绍了车牌字符识别中的样本集和测试集的组织、图像二值化、归一化、图像去噪、神经网络构建和训练。实践结果表明,本系统适用于自然场景中的车牌自动识别问题,并且具有较强的适应性。

关键词: 车牌字符识别, BP网络, 图像二值化, 全局阈值, 去噪

Abstract:

In view of the shortcomings of the automobile license plate identification systems, such as the low identification accuracy and efficiency under practical conditions, a new identification system based on the BP network is designed. In terms of engineering application,the character identification of automobile license plates is addressed in detail, including building the training sets of samples, image binarization, normalization, removal of noise,and neural network construction. The experimental results show that the system has good performance even when the  images have low quality and the license plates are located in a complicated natural scene.

Key words: automobile license plate character identification;BP neural network;image binarization;global valve;removal of noise

中图分类号: