J4 ›› 2006, Vol. 28 ›› Issue (7): 49-52.
• 论文 • 上一篇 下一篇
黄丽达[1] 邹北骥[2]
出版日期:
发布日期:
Online:
Published:
摘要:
纹理是图像的重要属性,基于纹理特征检索图像是当前的研究热点,对图像的纹理进行相似性比较是进行图像检索的关键.根据纹理的特点,本文将通用的向量空间模型进行拓展 ,构建了一个针对簇集进行相似性匹配的模型—聚类空间模型,对图像纹理相似性进行度量,并据此实现了无需分割的多纹理图像检索.我们分别针对单纹理图像和自然图像库进 进行了实验,获得的实验结果与人类视觉认知的结果一致.
关键词: 图像纹理 图像检索 聚类空间模型 相似性
Abstract:
Texture is an important item of image information, texture-based image retrieval has been an active research area, and the similarity comparison of te xture features is a key to image retrieval. In this paper, based on the properties of texture, by expanding the Vector Space Model (VSM), we create a new model for matching the similarities of feature signatures to measure the similarities of texture images, which is called Clusters Space Model (CSM M). And based upon it, a new method of multiple texture image retrieval without segmentation is shown. By comparing with other similarity measures for texture features, experimental results indicate it is consistent with human perception.
Key words: image texture knage retrieval CSM similarity
黄丽达[1] 邹北骥[2]. 图像纹理特征相似性度量的研究[J]. J4, 2006, 28(7): 49-52.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2006/V28/I7/49