图聚集技术是将一个大规模图用简洁的小规模图来表示,同时保留原始图的结构和属性信息的技术。现有算法未同时考虑节点的属性信息与边的权重信息,导致图聚集后与原始图存在较大差异。因此,提出一种同时考虑节点属性信息与边权重信息的图聚集算法,使得聚集图既保留了节点属性相似度又保留了边权重信息。该算法首先定义了闭邻域结构相似度,通过一种剪枝策略来计算节点之间的结构相似度;其次使用最小哈希(MinHash)技术计算节点之间的属性相似度,并调节结构相似与属性相似所占的比例;最后,根据2方面相似度的大小对加权图进行聚集。实验表明了该算法可行且有效。