• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

Computer Engineering & Science

Previous Articles     Next Articles

A small sample face recognition algorithm based on
improved fractional order singular value decomposition
and collaborative representation classification
 

ZHANG Jianming1,2,LIAO Tingting1,2,WU Honglin1,2,LIU Yukai1,2   

  1. (1.Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,
    Changsha University of Science and Technology,Changsha 410114;
    2.School of Computer and Communication Engineering,
    Changsha University of Science and Technology,Changsha 410114,China)

     
  • Received:2016-03-18 Revised:2017-01-30 Online:2018-07-25 Published:2018-07-25

Abstract:

With the reduction of training samples, the performance of traditional face recognition methods drops sharply. We propose an improved fractional order singular value decomposition (IFSVDR) method combined with patch based CRC (PCRC) framework. As the performance can be affected when training samples contain noise, we improve the SVD algorithm by using the fractional order to increase the weight of the main orthogonal basis, and decrease the weight of the relatively small basis to reduce the influence of noise on classification results. Then, we use the PCRC to classify the patches which are reconstructed by the IFSVDR. Compared with the classical sparse representation, the idea of ensemble learning enables the PCRC to deal with the small sample size problem. And the CRC has a lower computation complexity than the SRC. Experiments on the extended Yale B and AR face databases show that the proposed IFSVDR combining with the PCRC has a high recognition rate, even in the case of small sample.
 

Key words: face recognition, improved fractional order singular value decomposition, patch based collaborative representation classification, small sample problem